

Study of antimicrobial activity of methanolic extract of *Alangium lamarkii* leaves against selected microbial species

Bodhisattwa Chakraborty¹, Uttam Kumar Bhattacharyya^{2*}, Samrat chakraborty² and Subhangkar Nandy³

1, Clinical Research Coordinator, Clinovation, (W.B.) - India

2, Gupta College of Technological Sciences, Ashram More, Asansol, (W.B.) - India

4, Dept. of Pharmacology, Vedica College of Pharmacy, RKDF Group, Bhopal (M.P.) – India

Abstract

Alangium lamarkii is one of the most popular medicinal plant in India, commonly known as Ankora. Traditionally the leaves of the plant has been used in inflammations, blood disorders, burning sensation, spermatorrhoea, gleet, acute fever and lumbago but its antimicrobial activity is yet to be reported.. The antimicrobial activity of crude methanolic extract of *Alangium lamarkii* leaves were tested by cup plate method against 08 human microbial pathogens. Crude methanolic extract of leaves showed zone of inhibition in *S. aureas-ML152* while it was not active against other organism such as *Shigella flexneri 4a24*, *Vibrio cholera 793*, *Bacillus subtilis US 564*, *Salmonella typhi DI-1*, *Candida albicans SSKM* and *Candida tropicalis ATCC750* while comparing with standard drugs.

Key-Words: Antimicrobial activity, Methanolic leaves extract, Human pathogens, Zone of Inhibition, *Alangium lamarkii*.

Introduction

The term antibiotic, as used in the official compendia, designated as a medicinal preparation containing a significant quantity of a chemical substance that is produced naturally by a microorganism or artificially by synthesis and that has the capacity to inhibit the growth or kill the micro-organism(s) in dilute solution. Standards of potency and purity for antibiotics are established by the FDA in the form of regulation published from time to time in the Federal Register. As all the recognized antibiotics are subject to the provisions of the regulations, this determines the official standards. The federal regulations governing all aspects of antibiotic testing are extremely detailed and are subject to periodic amendment, they should be consulted with regard to prescribed methods for the assay of individual antibiotics and their preparations.¹ Despite of tremendous progress in human medicines, infectious diseases caused by bacteria, fungi, viruses and parasites are still a major threat to public health. Their impact is particularly large in developing countries due to relative unavailability of medicines and the emergence of widespread drug resistance².

During the last two decades, the development of drug resistance as well as the appearance of undesirable side effects of certain antibiotics³ has lead to the search of new antimicrobial agents mainly among plant extracts with the goal to discover new chemical structures, which overcome the above disadvantages⁴.

Since generations, in India, people are using the extracts and leachates of different herbs in order to stimulate and promote the growth of specific herbs. The leaves are useful in treatment of inflammations, blood disorders, burning sensation, spermatorrhoea, gleet, acute fever and lumbago. It is very effective in treatment of migraine. In case of intense pain due to gout, the patients are advised by the healers to apply the Ankol leaves in affected parts. The leaves are also used in treatment of asthma. The leaves are dried and put on fire. The patients are advised to inhale the fumes. According to Ayurveda, the root is acrid, pungent, heatproducing and useful in treatment of biliousness, inflammations etc. The juice is emetic and alexipharmac and useful in treatment of pain, blood disorders, hydrophobia, rat-bite, lumbago, dysentery and diarrhoea whereas the seeds are cooling, aphrodisiac, indigestible and tonic. The root bark is used in piles whereas fruits are considered as purgative, expectorant and carminative.⁵⁻⁶

* Corresponding Author

E.mail: bhattacharyauttam@rediffmail.com
Mob.: 91-9434311801

The present investigations were, therefore, proposed in evaluate the efficacy of the methanolic extract of *Alangium lamarkii* against microbes.

Material and Methods

The leaves of *Alangium lamarkii* are collected from Bankura and Asansol, West Bengal, India. A herbarium sheet was prepared and it was identified and authenticated by the Botanical Survey of India, Howrah, West Bengal, India (CNH/35/2011/TECH.II/446). The leaves were dried in shade or under controlled condition to avoid too many chemical changes occurring and made into a coarse powder.

Preparation of Methanolic Extract of *Alangium Lamarkii*

The powdered leaves of *Alangium lamarkii* were subjected to soxhlet extraction using Methanol as solvent.

Bacterial Strains

The various organisms used in the present study include *Staphylococcus aureus* ML276, *Shigella flexneri* 4a24, *Vibrio cholera* 793; *Bacillus subtilis* US 564, *Salmonella typhi* DI-1 were collected from National collection of industrial microorganisms (NCIM), National Chemical Laboratory, Pune, Maharashtra, India. These organisms were maintained on nutrient agar slopes and the organisms were confirmed by biochemical test.

Preparation of Standard Bacterial Suspensions

The average number of viable *Staphylococcus aureus* ML276, *Shigella flexneri* 4a24, *Vibrio cholera* 793, *Bacillus subtilis* US 564, *Salmonella typhi* DI-1 organisms per ml of the stock suspensions was determined by means of the surface viable counting technique. About (10^8 - 10^9) colony forming units per ml

was used. Each time, a fresh stock suspension was prepared; the experimental conditions were maintained constant so that suspensions with very close viable counts would be obtained.

Preparations of Media for Bacterial strain

Nutrient Agar was used as a media preparation. For 1000 ml Nutrient Agar preparation, Peptone-10gm, Sodium Chloride-5.036, Beef Extract-5.036, and Agar-15.225 was weighed and dissolved in 1000 ml of distilled water and adjusted to pH 7.3-7.4 which was sterilized by autoclaving at 121°C for 15 minutes at 15 psi pressure and was used for sensitivity tests.

Preparation of Standard Solution for Antibacterial activity

Chloramphenicol eye drop was taken as a Standard antimicrobial solution which contains 0.5%w/v of Chloramphenicol, considered as a stock solution. From this stock solution 10 μ l was taken and dilute into 40 μ l water to make the concentration 1000 μ g/ml which pour each bore of the plate.

Anti-Fungal Activity

Preparation of Media

Sabouraud Dextrose Agar (Hi-media) media (SDA) was used for cultivation of fungi and particularly pathogenic fungi associated with skin infections.

Composition (gm/liter)

Peptone 10g, dextrose 40g and agar 15g; pH5.6 \pm 0.2. 65 gm of SDA was dissolved in 1000ml of distilled water. The medium was sterilized by autoclaving at 121°C for 15 minutes at 15psi pressure [7].

Preparation of Standard Solution

150 mg Fluconazole Tablet was grinded in a mortar pestle and dissolve in 300ml distilled water to make the concentration 500 μ gm/ml. This concentration was given in each bore for making the zone of inhibition.

Anti-Microbial Study of *Alangium lamarkii*

Determination of Zone of Inhibition by Cup Plate Method

1. The method is based on the diffusion of a standard antibiotic (Chloramphenicol) from a cavity through the solidified agar medium.
2. 100mg of the methanolic extract of *A.lamarkii* was dissolved in 50 ml DMSO to make a stock solution of 2mg/ml.
3. 500 μ gm/ml, 1000 μ gm/ml, 1500 μ gm/ml, 2000 μ gm/ml was taken from the stock solution in different test tubes and from this solution only 200 μ l was taken and pour into different cavities.
4. A standard Chloramphenicol (50 μ g/ml) was used as positive control.
5. The antibiotic assay medium was sterilized by autoclaving and the Petri dishes were prepared under laminar air flow. The test microorganisms

were spread on the surface of the plate by spread plate technique.

6. 5 cups were prepared in each plates keeping adequate distance from each others by using flame sterilized cork borer.

7. Standards and test solutions were poured in each labeled cavity of plates.

8. All the plates were transferred in refrigerator for proper diffusion of antibiotics at 4°C for 1-2hrs.

9. All the plates were placed in incubator at 32-35°C for 24-48hrs for proper incubation.

Same method was carried out in antifungal activity study where Fluconazole was used as standard drug (concentration 500 μ gm/ml).⁸⁻¹⁰

Results and Discussion

The effect of temperature on the CL glow curve of Methanolic Extract of *A.lamarkii* shows antimicrobial activity against pathogenic bacteria. The Petri dishes were incubated at 37°C for 24 hours. After incubation it was observed that the antimicrobial activity was shown against *S. aureas*-ML152 while it not active against *Staphylococcus aureus* ML276, *Shigella flexneri* 4a24, *Vibrio cholera* 793, *Bacillus subtilis* US 564, *Salmonella typhi* DI-1 when standard antibacterial drug was used as chloramphenicol(Table 1)(Figure 1A-B).

On the other hand, Methanolic Extract of *A.lamarkii* not shows antifungal activity against *Candida albicans* SSKM and *Candida tropicalis* ATCC750 & compare with the standard drug fluconazole(Table 2).¹¹⁻¹²

The result shows that the methanolic leaves extract of *A. lamarkii* has displayed concentration dependant antimicrobial activity, thus indicating antimicrobial activity towards pathogenic bacteria. The antimicrobial activity was shown against *S. aureas*- ML 276 while it has no activity against *Staphylococcus aureus* ML276, *Shigella flexneri* 4a24, *Vibrio cholera* 793, *Bacillus subtilis* US 564, *Salmonella typhi* DI-1, *Candida albicans* SSKM and *Candida tropicalis* ATCC750. But the antimicrobial activity was found to be less than the standard agent Chloramphenicol (standard antibacterial agent) and fluconazole (standard antifungal agent), used in the study.

Acknowledgement

The authors are thankful to Prof. Debesh Chandra Mazumder, Chairman, Trinity Trust, Asansol-713301, (W.B) & Prof. (Dr). Kalyan Kumar Sen, Principal, G.C.T.S., Asansol-713301 W.B.) for providing the resources to carry out this work and their valuable guidance.

References

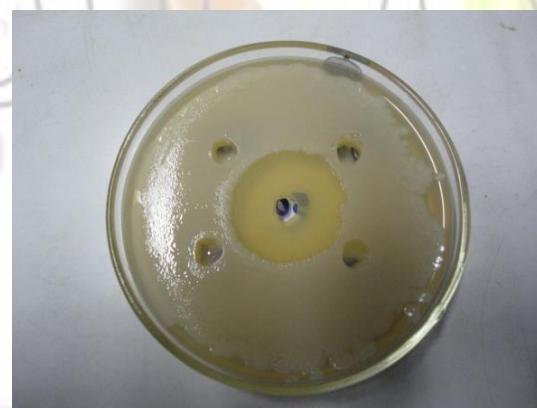
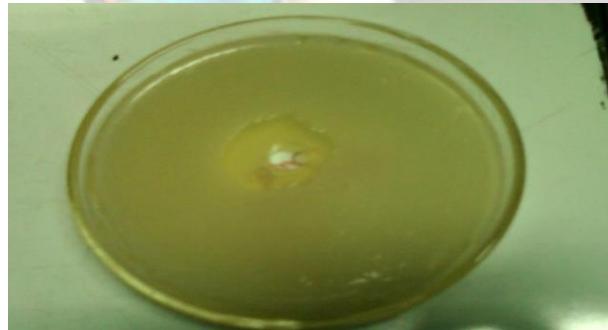

1. Remington. *The Science and Practice of Pharmacy*; Indian Edition, Distributed in India by B.I Publication Pvt.Ltd, Vol-I, 20th edition: 548.
2. Zampini I.C., Cuello S., Alberto M.R., Ordonez R.M., Almeida R.D., Solorzano E. and Isla M.I. (2009). Antimicrobial activity of selected plant species from the Argentine puma against sensitive and multiresistant bacteria. *Journal of Ethnopharmacology*, **124**: 499-505.
3. Okemo P.O., Bais H.P. and Vivanco J.M. (2003). *In vitro* activities of *Maesa lanceolata* extracts against fungal plant pathogens. *Fitoterapia*, **74**: 312-316.
4. Bouamama H., Noel T., Villard J., Benharref A. and Jana M. (2006). Antimicrobial activities of the leaf extract of two Moroccan *Cistus* L species. *Journal of Ethnopharmacology*, **104**: 104-107.
5. Botanical.com Research Note-Pankaj Oudhia 2001, 2002, 2003.
6. Itoh A., Ikuta Y., Tanahashi T. and Nagakura N. (2000). *J Nat Prod.*, **63(5)**:723-5.
7. Kokoska L., Polesny Z., Rada V., Nepovim A. and Vanek T. (2002). Screening of some Siberian Medicinal plants for antimicrobial activity. *J Ethnopharmacol*, **82**: 51-53.
8. Lehmann P.F. (1985). Immunology of fungal infections in animals. *Vet. Immunol. Immunopatholo*, **10**: 33-69.
9. Gerard J. Tortora, Berdell R. Funke and Christine L. *Microbiology An Introduction*, Pearson education; 8th edition: 591-592.
10. Frobisher M., Hinsdill R.D., Crabtree K.T. and Goodheart C.R. (1974).. *Fundamentals of Microbiology*. Philadelphia, PA., Saunders Company, W.B. 9th ed, Chapter 23 Antibiotics: 319- 330.
11. Arya Vedpriya, Yadav Sanjay, Kumar Sandeep and Yadav J.P. (2010). Antimicrobial Activity of *Cassia occidentalis* L (Leaf) against various Human Pathogenic Microbes. *Life Sciences and Medicine Research*, LSMR-9.
12. Cutler R. and Wilson P. (2004). Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant *Staphylococcus aureus*, *British Journal Of Biomedical Science*. 61 (2).

Table 1: Antibacterial Activity of methanolic leaves extract of *A. lamarkii* and comparison with standard antibiotic (Chloramphenicol).

S/No.	Organisms	Zone of inhibition (mm)				
		500 $\mu\text{gm}/\text{ml}$	1000 $\mu\text{gm}/\text{ml}$	1500 $\mu\text{gm}/\text{ml}$	2000 $\mu\text{gm}/\text{ml}$	Standard 50 $\mu\text{gm}/\text{ml}$
1.	<i>Shigella flexneri</i> 4a24	-	-	-	-	12
2.	<i>Vibrio cholera</i> 793	-	-	-	-	10
3.	<i>Salmonella typhi</i> DI-1	-	-	-	-	14
4.	<i>Staphylococcus aureus</i> ML276	-	-	7	10	16
5.	<i>Candida albicans</i> SSKM	-	-	-	-	13
6.	<i>Bacillus subtilis</i> US 564.	-	-	-	-	12


Table 2: Antifungal activity of methanolic leaves extract of *A. lamarkii* comparing against standard drug

S/ No.	Organism	Concentration of extract in $\mu\text{g}/\text{ml}$ and zone of inhibition in mm				Standard drug $\mu\text{g}/\text{ml}$
		500	1000	1500	2000	
1.	<i>Candida albicans</i> SSKM	-	-	-	-	19
2.	<i>Candida tropicalis</i> ATCC750	-	-	-	-	20

(A)

(B)

(C)

Fig. 1: (A) Plate showing Zone of inhibition with Extract. (B) Plate showing Zone of inhibition with Standard drug. (C) Plate showing Zone of inhibition with *Staphylococcus aureus* ML276 (1500 $\mu\text{gm}/\text{ml}$ and 2000 $\mu\text{gm}/\text{ml}$)