




## Thin Layer Chromatography (TLC) and Infra – red (IR) Spectral Analysis of components of *Acalypha indica* Linn

S. Senthilkumar<sup>1</sup> and C. Kiruba Rani<sup>2</sup>

<sup>1</sup>Post Doctoral – Research Scholar, Manipur International University, Imphal, (Manipur) - India

<sup>2</sup>Department of Biochemistry, Vellalar College for Women, Erode, (T.N.) - India

### Article info

Received: 12/06/2024

Revised: 22/06/2024

Accepted: 01/08/2024

© IJPLS

[www.ijplsjournal.com](http://www.ijplsjournal.com)

### Abstract

*Acalypha indica* is an important medicinal plant and traditionally used as throat infections, wound healing, arthritis, ulcer and diabetes mellitus. Thin layer chromatography (TLC) the present study showed separation of two deep violet colour spots with  $R_F$  values 0.31 and 0.72 which may represent the presence of alkaloids. Infra-Red (IR) spectral analysis of *Acalypha indica* showed C-H, -C=C-, N-H bend, C-C, C-H rock, O-H bend and C-C1 stretchings which may be attributed to the presence of functional groups like alcohol, alkenes, primary amines, aliphatic amines and alkylhalides.

**Key words:** TLC, IR spectral, *Acalypha indica*, medicinal plants, phyto components.

### Introduction

The thin layer chromatography (TLC) method is an important analytical tool for the separation, identification and estimation of different classes of bioactive compounds[1]. *Acalypha indica*, in particular have been found contain phenolics, Tannin and Flavonoids[2]. These compounds have various biological properties, such as antioxidant, antimicrobial, antidiabetic, immunomodulatory, antilulcer, antiarthritic and hepatoprotective functions[3]. These phytoconstituents give special characteristics and properties to plants. Therefore, the analysis of these bioactive compounds in plants would help in determining various biological activities of plants[4].

Infrared spectroscopy is now widely used in biology. The IR spectrum analysis allows determining physical-chemical or biological characteristics of a sample, for example, chemical composition, granulesize, density, etc.[5]. At present, there are databases of infrared spectra of food products, technical and food additives, medicines, poly and monomers, plasticizers, toxic

chemicals, solvents, petroleum products, toxic substances, steroids, and other compounds having mainly plant-specific single-component composition[6,7].

### Materials and methods:

#### Preparation of TLC plates

25×10 cm glass plates were washed with distilled water followed by smearing with acetone. After drying the plates were placed on the template in row. The slurry of silica gel G prepared with glass distilled water in the ratio 1:2 (w/v) was poured in the applicator. The glass plates were immediately coated with a layer of silica gel in 500 $\mu$ m thickness. The coated plates were activated at 80° C for 3 h. Then the plates were stored in a plate chamber for further study. In that study, chloroform and methanol were used as solvents in the ratio of 96:4[8].

---

#### \*Corresponding Author

E-mail: drsenthilkumarbio@gmail.com

### Preparation of Dragendprff's reagent

#### Solution A

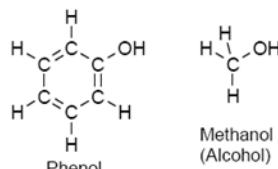
0.6 g of Bismuth subnitrate was dissolved in 2ml of concentrated hydrochloric acid and added 10ml of distilled water.

#### Solution B

6g of Potassium iodide was dissolved in 10ml of water.

The solutions A and B were mixed together with 7ml of concentrated hydrochloric acid and 15ml of water. The whole content was diluted to 400 ml with distilled water.

#### Solvent


Acetic acid : ethanol (1:3)

#### Loading of substances

The concentrated plant extract of 2.5mg was loaded on the TLC plates just above 2cm from the bottom using a capillary tube. The plates were reserved in a developing jar containing the solvent mixture. After the solvent front reacted approximately 18cm height, the plates were removed and allowed at room temperature for 30 min. Then the plates were observed by spraying with Dragendorff's reagent and recorded the  $R_f$  value of visualized spots.

#### Infra-Red (IR) Spectral analysis of components of *A. indica*

##### – Hydrogen bonded OH

|                                |                                                                                     |                  |                                                                                                            |
|--------------------------------|-------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------|
| <b>Phenols &amp; Alcohols:</b> |  | <b>3600-3100</b> | Hydrogen-bonded O-H Stretch<br><br>(This peak usually appears much broader than the other IR absorptions.) |
|--------------------------------|-------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------|

|                           |                                   |                          |
|---------------------------|-----------------------------------|--------------------------|
| <b>bond : C–H stretch</b> | <b>Functional group : alkanes</b> |                          |
| <b>Alkenes:</b>           | <b>3100-3000</b>                  | C=C–H Asymmetric Stretch |
|                           | <b>1675-1600</b>                  | C–C=C Symmetric Stretch  |

**1653.00 – bond –C=C– stretch**

**1620.21 – bond : N–H bend**

**1402.25 – bond C–C stretch (in–ring)**

**1363.67 – bond : C–H rock**

**1276.88 – bond: C–H wag (–CH<sub>2</sub>X)**

**1240.23 – 1060.84 –Bond: C–N stretch**

**21.97 – bond: O–H bend**

**835.81 – bond: C–Cl stretch**

**Functional group: alkenes**

**Functional group: 1° amines**

**Functional group: aromatics**

**Functional group: alkanes**

**Functional group: alkyl halides**

**Functional group :aliphatic amines**

**Functional group: Carboxylic Acids**

**Functional group: alkyl halides**

**Table 1. Separation of phytocomponents of *A. indica* by TLC**

| Fractions/spot | Colour of the spot | R <sub>f</sub> value of the spot |
|----------------|--------------------|----------------------------------|
| Spot-I         | Deep violet        | 0.31                             |
| Spot-II        | Deep violet        | 0.72                             |



**Fig.1 TLC analysis of Phytocomponents of *A.indica***

**Table 2. IR Spectral data of *A. indica* extract**

| S.No | Peak    | Intensity | Corr. intensity | Base (H) | Base (L) | Area   | Corr. area |
|------|---------|-----------|-----------------|----------|----------|--------|------------|
| 1    | 420.48  | 34.84     | 1.33            | 422.41   | 399.26   | 9.04   | 0.48       |
| 2    | 538.14  | 23.28     | 1.74            | 555.5    | 424.34   | 73.93  | 3.01       |
| 3    | 590.22  | 22.91     | 0.27            | 599.86   | 565.14   | 22.07  | 0.1        |
| 4    | 613.36  | 22.79     | 0.72            | 636.51   | 601.79   | 22.01  | 0.29       |
| 5    | 651.94  | 24        | 1.96            | 746.45   | 638.44   | 57.89  | 1.29       |
| 6    | 761.88  | 36.41     | 2.93            | 802.39   | 748.38   | 21.61  | 0.93       |
| 7    | 835.18  | 42.61     | 6.57            | 885.33   | 804.32   | 27.37  | 2.82       |
| 8    | 921.97  | 43.73     | 6.34            | 948.96   | 887.26   | 20.1   | 1.76       |
| 9    | 1060.85 | 6.06      | 33.71           | 1192.01  | 950.91   | 195.55 | 94.58      |
| 10   | 1240.23 | 22.3      | 5.34            | 1261.45  | 1193.94  | 39.44  | 2.53       |
| 11   | 1276.88 | 26.13     | 0.07            | 1280.73  | 1263.37  | 10.1   | 0.02       |
| 12   | 1363.67 | 15.06     | 1.03            | 1371.39  | 1282.66  | 62.32  | 0.92       |

|    |         |       |       |         |         |        |        |
|----|---------|-------|-------|---------|---------|--------|--------|
| 13 | 1402.25 | 13.8  | 7.88  | 1533.41 | 1373.32 | 98.26  | 9.24   |
| 14 | 1602.21 | 13.94 | 7.71  | 1639.49 | 1535.34 | 62.26  | 5.14   |
| 15 | 1653    | 14.46 | 4.65  | 1878.67 | 1641.42 | 57.05  | 0.83   |
| 16 | 2096.62 | 96.47 | 4.34  | 2279.86 | 1890.24 | 2.05   | 3.45   |
| 17 | 2931.8  | 22.23 | 15.93 | 2995.45 | 2281.79 | 145.74 | 14.71  |
| 18 | 3383.14 | 3.41  | 66.23 | 3732.26 | 2997.38 | 653.33 | 477.03 |

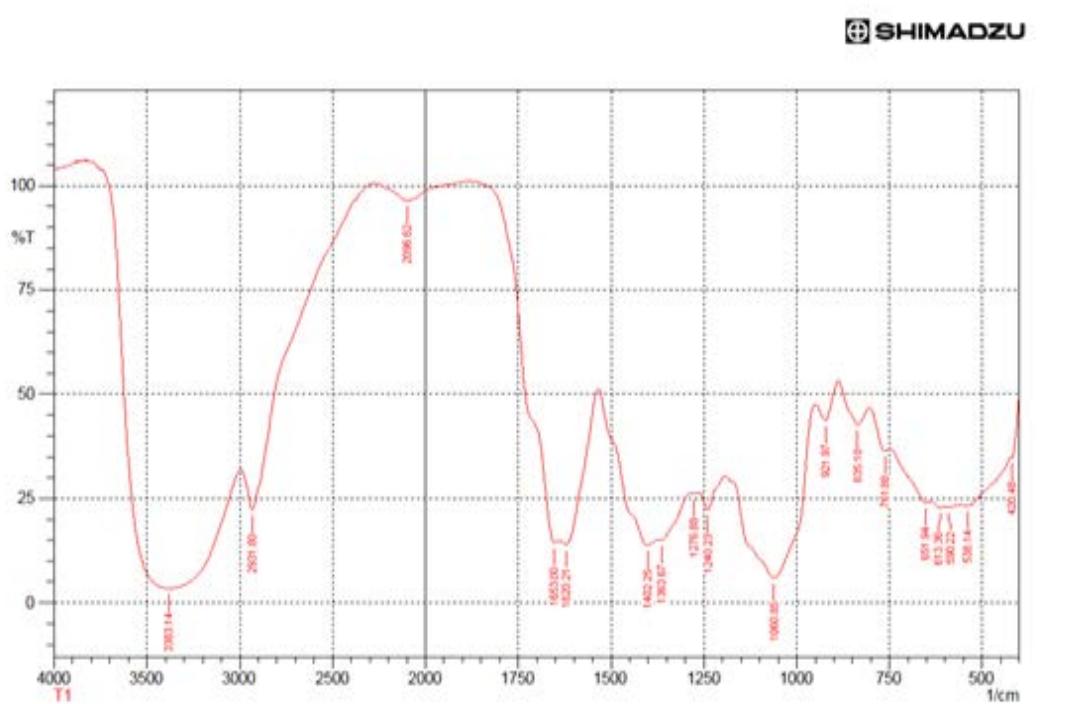



Fig. 2. IR Spectrum of ethanolic extract of *Acalypha indica* extract

### Conclusion

TLC serves as one of the many methods in providing a chromatographic plant extract finger print[11]. Gabriela[12] suggested that the colours of the spots in TLC and their position relative to standard substances are the two important characteristics for plant extract identification. The present study showed separation of two deep violet colour spots with  $R_f$  values 0.31 and 0.72 which may represent the presence of alkaloids in the selected plant extract(Table 1; Fig.1) similar phytochemical analysis was carried out in plant drug[13].

The identification of an organic compound by the infrared technique is usually carried out by examining certain regions of the spectrum in a

systematic way. The absorption peaks obtained in the region of 3000-2850  $\text{cm}^{-1}$  are due to the presence of aliphatic CH vibration, the carbonyl stretching vibration at 1700  $\text{cm}^{-1}$  due to the presence of ketones, aldehydes, acids, amides and carbonates and C-O-C stretching vibration in esters and ethers are found at 700-800  $\text{cm}^{-1}$ [10]. In the present study, the IR spectral data given in Table 2 & Fig.2 showed C-H, -C=C, N-H bend, C-C, C-H rock, O-H bend and C-Cl stretchings which may be attributed to the presence of functional groups like alcohol, alkenes, primary amines, aliphatic amines and alkyl halides.

### References

1. Satyanarayana V. and Kumari S.J.(2016). Preliminary Phytochemical screening and TLC profile of selected four plants of

- Tirupati hills in chitoor district. Andhra Pradesh. *Journal of pharmacognosy and phytochemistry*. 5(2): 259-260.
2. Mbikay M.(2012). Therapeutic potential of *moringa oleifera* leaves in chronic hyperglycemia and dyslipidemia: a review. *Frontiers in pharmacology* 3: 24-25.
  3. Khalafalla M.M, Abdellatef E, Dafalla H.M, Nassrallah A.A, Aboul-Enein K.M, Light foot K.M. and El-shemu H.A.(2010). Active principle from *Moringa oleifera* Lam leaves effective against two leukemias and a hepato carcinoma. *African journal of biotechnology*. 9(49): 8467-8471.
  4. Rajula E. and Ujwala J.(2010). Phytochemical screening of *Moringa oleifera* using high performance thin layer chromatography. *Plant Archives*. 10(2): 749-751.
  5. Siedin A.V, Orlaovskaya M.V and Gavrilin T.V.(2014). Use to IR spectroscopy for rapid identification of glycosides in plant raw material. *Modern probl. of sci. and ed.* PP 367-368.
  6. Valiulina D.F, Makarova D.V. and Budylin N.V.(2018). Comparative analysis of these chemical composition and antioxidant properties of different types of tea as a raw material for the production of tea extracts, proc. of Voronezh state univer. of Engineer. *Technol.* 80(2): 249-255.
  7. Chernousova O.V, Krivtsova A.I and Kuchmenko T.A.(2018). The study of antioxidant activity of white tea. *Proc. of Voronezh state univer. of Engineer. Technol.* 80(1): 133-139.
  8. Anushia C, Sampath kumar P. and Ramkumar L.(2009). Antibacterial and antioxidant activity of *Cassia auriculata*. *Global J. Pharmacol.* 3(3): 127-130.
  9. William kemp(1975). *Infrared spectroscopy*. *Organic spectroscopy*. ElBS. Ed. Macillan education ltd. London. PP. 8-64.
  10. Sharma B.K.(1995). *Instrumental methods chemical analysis*, Goel publishing house, meerut. 14<sup>th</sup> ed. Krishna Prakashan Mandir. PP.150-191.
  11. Wagner H. and Bladt S.(1996). *Plant drug analysis: A thin layer chromatography Atlas*. Second ed. Springer-verlag Berlin Heidelberg, New York. PP.384.
  12. Gabriela C.(2009). *TLC analysis: Encyclopedia of chromatography*. *Plant Extracts*. Third ed. Sirius analytical instruments Ltd. East sussex, U.K. PP.43.
  13. John De Britto A, Herin Sheeba Gracelin D. and Bengamin Jeya Rathna Kumar P.(2011). Anti microbial activity of few medicinal plants against Gram negative bacteria. *Int. J. APP. Biol. Pharma.* 2: 457-461.

**Cite this article as:**

Senthilkumar and Rani C. K. (2024). Thin Layer Chromatography (TLC) and Infra – red (IR) Spectral Analysis of components of *Acalypha indica* Linn. *Int. J. of Pharm. & Life Sci.*, 15(8): 1-5.

Source of Support: Nil

Conflict of Interest: Not declared

For reprints contact: [ijplsjournal@gmail.com](mailto:ijplsjournal@gmail.com)