

Lipid Based Drug Delivery System for enhancing oral absorption of Biopharmaceuticals

Nidhi Pal* and Vishal Dubey

Naraina Vidyapeeth Group of Institutions,

Faculty of Pharmacy, Panki, Kanpur, (U.P.) - India

Article info

Received: 12/05/2025

Revised: 10/06/2025

Accepted: 14/06/2025

© IJPLS

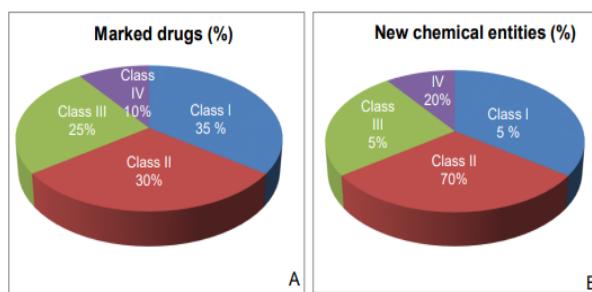
www.ijplsjournal.com

Abstract

Low bioavailability and therapeutic efficacy are the results of poorly aqueous soluble medicines' inadequate combination of drug absorption, water solubility, and dissolution. Low bioavailability further reduces the administered method's effectiveness and efficiency. Therefore, a medication delivery system that can guarantee therapeutic efficacy and adequate drug bioavailability must be developed. Class II and IV medication molecules, according to the biopharmaceutical categorization system, have very poor oral bioavailability due to their inappropriate solubility in gastrointestinal fluids. Most pharmacological compounds, notably BCS class II, have a limited dissolving rate, affecting absorption. Most conventional drug delivery systems fail to achieve desired dissolution rates and maintain the drug in a solubilized state at the absorption site, resulting in poor drug bioavailability and therapeutic efficacy. Pre-dissolved drugs are used in this method to get around limitations on dissolving rate and increase lymphatic system absorption, which makes the medication bioavailability and therapeutic efficacy better.

Keywords: Drug delivery, Oral, Biopharmaceuticals

Introduction


Discovering new therapeutic compounds has become easier with the use of modern drug discovery systems, which include advances in combinatorial chemistry and high throughput screening. However, most of the medication molecules are lipophilic, which means that they do not dissolve well in water. During the process of developing a medication, estimates indicate that only one molecule out of ten thousand made it onto the market. According to recent estimates, as seen in Figure 1.1, a large portion of the medicinal items on the market and novel chemical entities (about 70%) do not dissolve well in water. Because of difficulties in properly dissolving, the

absorption rate and bioavailability are both negatively impacted by medications that are poorly soluble in water. Scientists in the pharmaceutical industry face a significant challenge in developing an efficient formulation system. Though bioavailability is a big concern, the oral route of medication administration is safe, easy, and generally well-received by patients. Low bioavailability and therapeutic efficacy are the results of poorly aqueous soluble medicines' inadequate combination of drug absorption, water solubility, and dissolution.

***Corresponding Author**

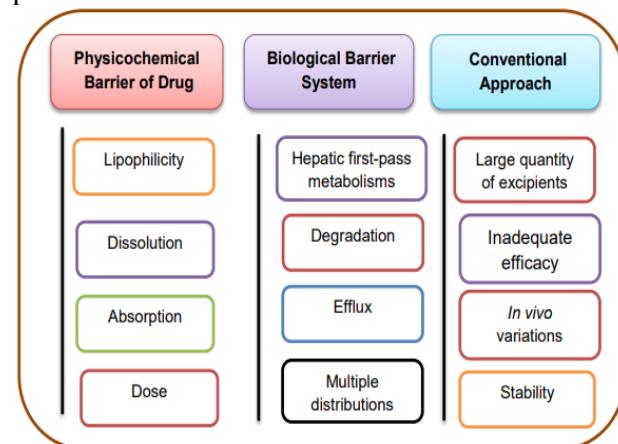

Low bioavailability further reduces the administered method's effectiveness and efficiency. Therefore, a medication delivery system that can guarantee therapeutic efficacy and adequate drug bioavailability must be developed. Class II and IV medication molecules, according to the biopharmaceutical categorization system, have very poor oral bioavailability due to their inappropriate solubility in gastrointestinal fluids. To overcome the absorption rate barrier when administered orally, a medicine must be soluble in gastrointestinal fluid and should stay in a soluble state at the site of absorption. Nevertheless, changes to the oral drug delivery system's key parameters—the solubility, dissolution, and permeability—may affect the bioavailability of the drug. In addition to these factors, other biological features that might affect drug bioavailability include hepatic first-pass metabolism, degradation, and efflux. The drug's bioavailability is generally acknowledged as a basic criterion for predicting the system's and drug's efficacy. The term "bioavailability" is often used to describe how quickly and to what degree a medicine enters the bloodstream. The amount and rate at which a drug enters the bloodstream is known as its bioavailability. This often happens between zero and one hundred percent. It may be necessary to take into account the medicine's physicochemical properties, biological system, and drug delivery mechanism in order to achieve the desired bioavailability. In general, lipophilic or hydrophobic drugs have poor solubility and limited drug absorption, which results in low and inconsistent bioavailability.

Figure 1.1: A) the percentage of drugs on the market that meet the criteria set forth by BCS Class, and B) the percentage of drugs under development that meet the same criteria set out by BCS Class

Oral Drug Delivery System

It is the safest and easiest method of drug administration, as well as the most common, despite the fact that oral administration accounts for more than 60% of medications. Because it is simple, painless, easy to handle, and has a high rate of patient compliance, the oral route is often used. Numerous studies indicate that low drug solubility, inadequate dissolving rate, and inadequate permeability are major contributors to poor bioavailability, as shown in Figure 1.2. Due to its inherent fragility, traditional drug delivery systems have failed to achieve the targeted therapeutic effectiveness. The necessity of long-term dosing regimens may have resulted in serious side effects. Recent years have seen an uptick in the use of lipid nanocarriers as a strategy for formulation development, thanks to their many benefits, such as the capacity to pre-disperse drugs in lipid excipients and their long-term stability. A careful and often utilized technique in the creation of formulations to achieve an effective therapeutic effectiveness of pharmaceuticals is lipid-based as a self-nanoemulsifying drug delivery system. Hence, this method of medication administration has been chosen for the pharmaceuticals that were chosen.

Figure 1.2: The difficulties of oral drug delivery are shown schematically from numerous angles

Why Poor Oral Bioavailability

The administered medication's bioavailability is crucial to its therapeutic efficacy. However, patient compliance is low for the majority of medications, particularly those in BCS classes II and IV, due to poor drug bioavailability. When a

drug's bioavailability is low, its therapeutic effectiveness and safety are compromised. Oral bioavailability is low for a number of possible causes. One of the most important factors is the medication's solubility; if it is insoluble in the dissolving medium, absorption of the medicine will be impaired. 2) Solubility: Medication solubility is a key component in the event that precipitation is not sufficiently induced. Thirdly, medication absorption via the portal vein as it undergoes metabolism in the liver before entering the systemic circulation is known as first-pass effects. In the gastrointestinal tract, the presence of numerous enzymes and pH fluctuations create a hostile environment that results in degradation. 5. Efflux: The medication may be pumped out of the intestines and into the gut wall, resulting in reduced drug circulation throughout the body. The oral bioavailability of a medicine may be affected by a number of additional factors, including the carrier system, molecular weight, membrane permeability, and so on.

Need For The Study

The drug's low water solubility presents a significant obstacle to formulation development. However, a number of scientific inquiries have been conducted on solvability enhancement strategies. Creating a medication that is both safe and effective is the formulation's crowning achievement. A large number of pharmacological compounds, however, are not very soluble in water. When a medicine has low aqueous solubility, it dissolves slowly in water, which reduces its absorption and, in turn, its therapeutic effectiveness since only a small fraction of the drug enters the bloodstream. These medications have low bioavailability, poor therapeutic effectiveness, and patient noncompliance when given unaltered or in an ineffective formulation because they do not dissolve. Alternatively, a major issue with drug delivery systems is the restricted therapeutic effectiveness that results from medication consumption due to low bioavailability.

As a result, a robust medication delivery system that enables effective therapeutic efficacy must be developed. When it comes to improving the bioavailability of pharmaceuticals, however, formulation research has mostly favored the self-nanoemulsifying drug delivery system as an

appealing and promising strategy. Due to solubility enhancement, lymphatic system absorption, and flexibility, it is a strategic drug delivery strategy. Additionally, the absorption rate limiting problem may be circumvented by using pre-dissolved medication and globules in the nanosize range, which boost the drug's dissolving rate. Lymphatic medication absorption has the potential to enhance therapeutic effectiveness by avoiding hepatic first-pass metabolism, which would otherwise degrade the medicine. The medication delivery method is more dependable, appealing, and distinctive due to these core principles.

Objectives of The Study

- To develop and optimize a lipid-based drug delivery system that enhances the oral absorption of biopharmaceuticals with poor bioavailability.
- To evaluate the solubility and stability of selected biopharmaceuticals in various lipid-based formulations.
- To investigate the impact of lipid-based carriers on the pharmacokinetics and pharmacodynamics of the encapsulated biopharmaceuticals.
- To analyze the gastrointestinal permeability and absorption profile of biopharmaceuticals delivered through lipid-based systems.
- To compare the efficacy of lipid-based drug delivery systems with conventional oral formulations in enhancing bioavailability.

Selection of Drug

For a medicine to have a therapeutic effect, it must reach the intended location of administration. The primary reasons for selecting BCS Class II medicines are their limited bioavailability and low water solubility. However, a sluggish dissolving rate, drug efflux, and changes in plasma levels are the most common issues associated with drugs that are poorly soluble in water. Medications recommended for use after meals to enhance oral absorption may be good candidates for this approach. But the medications chosen as models were glibenclamide and itraconazole.

Glibenclamide

One common medication for the control of type 2 diabetes is glibenclamide, a powerful hypoglycemia agent. Unfortunately, bioavailability is low because to the drug's low water solubility, sluggish dissolving rate, and substantial first-pass metabolism in the liver.

Itraconazole

It is a powerful antifungal medication with a wide range of action, and it may be used to treat systemic and localized fungal infections. Low bioavailability is a result of slow absorption caused by inadequate water solubility, which in turn limits the rate of dissolution.

Hypothesis

- Lipid-based drug delivery systems significantly enhance the oral absorption of biopharmaceuticals compared to conventional formulations.
- The solubility and stability of biopharmaceuticals are improved in lipid-based formulations due to their lipophilic nature.
- Lipid-based drug delivery systems enhance gastrointestinal permeability, leading to improved pharmacokinetics of the biopharmaceuticals.
- The use of self-emulsifying drug delivery systems (SEDDS) results in faster drug release and higher bioavailability compared to other lipid-based carriers.
- Lipid-based systems protect biopharmaceuticals from enzymatic degradation, resulting in improved therapeutic efficacy.

Materials and Methods

Materials

Table 3.1: List of Materials

Material/Chemical	Source	Location
Glibenclamide	Wockhardt, Ltd.	Aurangabad, India
Histaconazole	Hetero Labs Ltd.	Hyderabad, India
Labrafill M	CS Gattefosse	Mumbai, India (1994)
PlurolOleique CC 497	Gattefosse	Mumbai, India
Gattefosse 90	Gattefosse	Mumbai, India

Labrasol	Gattefosse	Mumbai, India
Captex 200	Abitec Group	USA
Hariol IPM	Subhash Chemicals	Pune, India
Butternut Squash Oil	Genuine Chemicals Co.	Mumbai, India
Cottonseed Oil	Genuine Chemicals Co.	Mumbai, India
Labrasol PG	Gattefosse	Mumbai, India
Labrasol ALF	Gattefosse	Mumbai, India
Capmul MCM EP	Abitec Group	USA
Polyethylene Glycol 200	Merck	Mumbai, India
Polyethylene Glycol 400	Merck	Mumbai, India
Transcutol P	Gattefosse	Mumbai, India
Triethylamine	Merck	Mumbai, India
Melathione	Merck	Mumbai, India
Fujicalin SG	Gangwal Chemical Company	Thane, India
Neusilin US2	Gangwal Chemical Company	Thane, India
Caco-2 Cell Line	NCCS	Pune, India

Table 3.2: Equipment List

Equipment	Model/Brand	Country of Origin
Digital Balance	Shimadzu	Japan
UV/Visible Spectrophotometer	Shimadzu	Japan
FTIR Spectrophotometer	Shimadzu	Japan
Differential Scanning Calorimeter	Shimadzu 8400 S	Japan
Digital pH Meter	Eutech Instrument	India

Vortex Mixer	Remi Motors	India
Sonicator	Bandelin RK 100 H	Germany
Temperature Water Bath	-	India
Viscometer	Brookfield, Inc.	USA
Abbe Refractometer	Borgo Optics, Bausch	USA
Dynamic Light Scattering Instrument	Microtrac	USA
Dissolution Tester	Electrolab-DT-08L	India
Scanning Electron Microscope	Hitachi S-4100	Japan
PXRD Instrument	Rigaku-Smart	Japan
Magnetic Stirrer	Remi	India
Isothermal Shaker	Remida Shaker	India
Subzero Refrigerator	Remi	India
Hot Air Oven	Servewell Instruments Pvt. Ltd.	India
HPLC System	Shimadzu	Japan
Stability Chambers	Thermolab	India

Methods

The most effective formulation was the focus of the initial research. Investigations into drug solubility, ternary phase diagram, and thermodynamic stability are used to select the best formulation composition prior to formulation development. The selection of lipid components for future drugs is aided by drug solubility studies. Formulation designers can select ranges for nanoemulsions using ternary phase diagrams. Thermodynamic stability analysis is used to select acceptable compositions and avoid precipitated formulations. Preliminary trials improve medication delivery reliability and robustness.

Selection of solid adsorbent

This is a handy solidification method. Safety, durability, and cost-effectiveness make solid adsorption technology popular. Neusilin US2, aerosil, fugicalin SG, sylysis, and other solid adsorbents were utilized in the creation of the solid version. Higher loading efficiency and freeflowing qualities might help choose an adsorbent. To ensure the product's safety, effectiveness, and stability, the solid powder

should therefore be analyzed for micromeritics and other criteria.

Loading efficiency

The solid adsorbent's ability to clamp liquid SNEDDS was calculated using the equation:

$$\text{Percentage of loading efficiency} = \frac{WL - WI}{WI} \times 100$$

WL = Solid SNEDDS weight, WI = Solid carrier initial weight.

Angle of repose

This is one of the common methods for measuring powder cohesiveness (flow characteristics). Angle between cone sides and horizontal surface area. Degrees represent the repose angle. Tests were done three times.

$$\tan \theta = \frac{\text{height (h)}}{\text{radius (r)}}$$

Flow property (Micromeritics)

Powder flow is required for tablet and capsule production. Therefore, understanding powder movement is vital for mixing, packing, and transport. Powder may be cohesive or free flowing. Product efficacy is impacted by the cohesive force between particles, which results in poor flow. Powder flow must therefore be suitable for consistent dosing. However, various factors have been devised to determine and explain powder flow:

Bulk density (Bd)

Pour the powder into a dry, untapped measuring cylinder and weigh it for measurement. The sample of occupied space is the bulk volume. Density is determined by the sample's mass and bulk volume, or density. The procedure was tripled.

Bulk density= W/V

W = Sample weight (g) V = Sample volume (ml)

Tapped density (Td)

The ratio of sample (powder) weight to real volume. A graduated cylinder with tapped is used to measure sample weight. The procedure was tripled.

Tapped density= W/Tv

In contrast, W= Sample weight (g).

Tv= Sample volume tapped (ml)

Hausner's ratio

Powder flow can also be understood using this method. Hausner's ratio is tapped density/bulk density. Lower hausner's ratio suggested better powder flow.

Hausner's ratio = Td/Bd

Bd is the bulk density, and Td is the tapped density. Hausner's ratio < 1.25 suggests acceptable flow properties, above it shows poor flow properties.

Carr's index or % compressibility

Additionally, it is useful for measuring powder flow. This is one of the best approaches for limited samples. The proportion is used.

Carr's index = $Tapped\ density - Bulk\ density \times 100/Tapped\ density$

Solubility studies

Lipid component screening is the first and crucial phase of this technique. Drug lipid components were chosen using solubility studies. We chose basic lipid components with better drug solubility. In a 2-ml eppendorf tube, 1ml of various vehicles and enough medication were combined by vortexing for 10 min. The eppendorf tubes were on an isothermal shaker at $25 \pm 1^\circ\text{C}$ for 72 hours to achieve equilibrium solubility. Samples were collected and centrifuged for 15 min at 3000 rpm to remove undissolved medication. Supernatants were filtered through $0.45 \mu\text{m}$ filter paper and diluted with methanol. Measurements of medication solubility in various components were made using a specific UV spectroscopy range (Shimadzu-1800, Japan). Triplicates were used for all tests.

Measurement of Globule Size, Polydispersity Index and Zeta Potential

Nano-based drug delivery system formulation performance is largely dependent on these elements. Photon correlation spectroscopy is most often employed to quantify these characteristics using light scattering intensity. Microtrac (Nanotrac Wave, USA) evaluated globule size, polydispersive index, and zeta potential of chosen formulations in these experiments. These tests diluted the formulations (1:100, v/v) 100 times in distilled water and blended for 1 min before evaluating. For measurement, 2 ml of the diluted sample was put in microtrac cuvettes.

Results & Discussion

Screening of Lipid Components

Figure 4.1 shows that lipid components with enhanced drug solubility were chosen. The system's effectiveness and potency may be affected by the medication's effective solubility in lipid components. Glibenclamide was most

soluble in labrafil M 1994 CS, tween 80, and transcutol P. The formulation's major constituent is these lipids. Maximum medication solubility in oil is necessary to avoid drug precipitation. medication precipitation in the gut may impair medication absorption and bioavailability, reducing therapeutic effectiveness. Labrafil M 1994 CS solubilizes lipid medication delivery systems frequently with synthetic oil. Stable, non-toxic, and biocompatible This technique uses surfactant, notably non-ionic surfactant because of its low toxicity and endurance. Biocompatible, non-toxic, non-ionic surfactant Tween 80 is less impacted by pH and ionic strength. prevent excessive surfactant in this system to prevent allergy or gastrointestinal discomfort. Co-surfactant improves formulation solubilization and lowers surfactant concentration. Most importantly, clear nanoemulsion should occur within 30 to 60 seconds, therefore surfactant selection is crucial. Transcutol P is a solubilizer and permeability enhancer. The formulation was developed using specified lipid components based on findings.

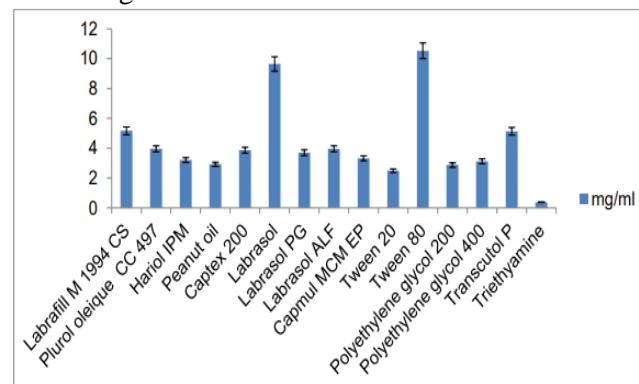


Figure 4.1: The solubility of drugs in different types of lipids

FTIR Studies

To investigate drug-lipid interaction, FTIR experiments were performed on the drug, chosen lipid components, and combination. These investigations show no drug-lipid interaction, making it a safe and suitable formulation. The specifics of solidification were revealed.

Construction of Ternary Phase Diagrams from the Selected Lipid Components

Ternary phase diagrams are essential to this method for nanoemulsion area identification and formulation design. Nanoemulsion ranges are solely used for formulation design. Figures 4.2

depict ternary phase diagrams made with chosen surfactant and cosurfactant (Smix) in various ratios with oil against double distilled water as shown in Tables 13 to 20. In formulation design, tertiary phase diagram shadow regions were utilized to represent nanoemulsion zones. As a result, ternary phase diagrams were used to create various formulations that were put through initial experiments to determine which one was the most effective. A formulation with little surfactant was selected for the current investigation.

Screening of Lipid Components

Lipid components with good drug solubility are used. Cottonseed oil, tween 80, and transcutol P were chosen due to their drug solubility, as shown in Figure 5.1. Transcutol P, cottonseed oil, and tween 80 are essential components. Because gastrointestinal fluids must contain solubilized drugs to prevent precipitation, which reduces therapeutic efficacy, drug solubility is essential. To solubilize, natural cottonseed oil is frequently utilized. Natural oils last longer and are biocompatible with biological membranes. Due to poor fatty components, most medication compounds have limited solubility with natural oils, and few have acceptable solubility. In drug delivery, physicochemical characteristics of drug molecules and oil may be crucial. Non-ionic surfactant is favored for its low toxicity and durability. The non-ionic surfactant Tween 80 is biocompatible, non-toxic, and stable. However, excessive surfactant may cause allergy or gastrointestinal discomfort, so avoid big amounts. Co-surfactant or cosolvent accelerates formulation solubilization and lowers surfactant concentration. Surfactant and co-surfactant selection is crucial in self-nanoemulsifying drug delivery systems, where the clear nanoemulsion should occur within 30 to 60 seconds. Transcutol P solubilizes and enhances permeability.

Selection of Formulation from the Ternary Phase Diagrams

Oil solubility was increased by 5% in the formulations. Table 5.9 shows different formulations adjusted to the selective nanoemulsion region using ternary phase diagrams. Dispersion and thermodynamic stability were examined for these selected formulations. The medication formulation that was chosen that passed these tests. This

investigation is considered a preliminary stage for formulation selection. Smaller globules, short emulsifying rate, low surfactant, and quick dissolving rate may improve the formulation.

Thermodynamic stability test

To prevent metastable formulation and permit proper formulation composition, this research was conducted. A thermodynamically stable nanoemulsion made from a particular spectrum of basic components should prevent precipitation or phase separation. Nanoemulsion's thermodynamic stability ensures kinetic stability and prevents precipitation and phase separation, unlike macroemulsion.

Dispersibility tests

Dispersibility tests verify nanoemulsion emulsification from SNEDDS formulation after oral administration. This research is also a stability parameter. The selected formulation results are shown in Table 38. However, formulation (Smix 1:0) without co-surfactant takes longer to emulsify. It is shown that co-surfactant reduces surface tension, facilitating emulsification and solubilization. However, an effective emulsification rate and dispersion test are essential for system homogeneity. The chosen formulations showed emulsification rates of 44 ± 5 s for D7, 39 ± 3 s for D8, 56 ± 6 s for F11, 52 ± 7 s for F14, and 58 ± 4 s for F15. However, selected formulations have emulsification rates below grade A, allowing for self-nanoemulsification and uniform dispersion in gastrointestinal fluids.

Summary

Oral bioavailability is impacted by medicinal compounds' lipophilicity. The first choice for patients is oral medication administration because it is straightforward. Pharmacological therapeutic efficacy must be required by the chosen approach. To reach the systemic circulation, the medication must be properly dissolved and solubilized at the absorption site when taken orally. Most pharmacological compounds, notably BCS class II, have a limited dissolving rate, affecting absorption. Most conventional drug delivery systems fail to achieve desired dissolution rates and maintain the drug in a solubilized state at the absorption site, resulting in poor drug bioavailability and therapeutic efficacy. Pre-dissolved drugs are used in this method to get around limitations on dissolving rate and increase

lymphatic system absorption, which makes the medication bioavailability and therapeutic efficacy better. S-SNEDDS (Solid powder) was created to overcome the drawbacks of liquid SNEDDS and increase the solubility of glibenclamide and itraconazole. The system's core selection criteria were followed. Oil, surfactant, and co-surfactant were significant medicinal components. To estimate the area of the formulation and the selective nano emulsion, ternary phase diagrams were created using selected lipid components and distilled water. However, the ratio of lipids in some formulations varied. Temperature stability, dispersibility, resistance to dilution and pH effects, globule size, polydisperse index, percentage transmittance, zeta potential, drug content, and in vitro drug release were also evaluated for the formulations. Despite the decreased globule size, the improved formulation chose a suitable emulsifying rate and quick dissolving rate. To assess safety, optimal formulation cytotoxicity was tested. The solid absorbent method converted the optimum liquid formulation into S-SNEDDS. S-SNEDDS were characterized, evaluated, and studied in vitro, in vivo, and for stability. Research investigations provide the following conclusions:

Glibenclamide Formulation

To address limitations of water solubility, hepatic first-pass metabolism, and low absorption rate, glibenclamide is manufactured as a lipophilic medication. The fundamental selection criteria for this medication delivery system were previously reported. Multiple formulations were created, characterized, and tested before choosing the best one. The liquid formulations have good thermodynamic stability, emulsifying rate, and dissolving rate. The characterisation and assessment of several characteristics showed that the produced formulations would provide effective medication therapy.

Compared to previous formulations, the improved glibenclamide SNEDDS has a smaller globule size, quicker dissolving rate, and adequate emulsification rate. The improved formulation has globule size of 16.61 ± 1.24 nm. Drug solubility is affected by smaller globules. However, the higher surface area of smaller globules (particles) enhances wettability, solubility, and drug dissolution. Compared to

15.430.38% for the pure drug, the optimized glibenclamide SNEDDS achieved 96.341.12% drug release in 30 minutes, indicating improved drug dissolution. This is a key goal for a successful medication delivery system. The created formulation has an adequate drug dissolving rate, thus medication absorption is not hindered. Thus, dissolution did not alter bioavailability in the formulated formulation.

A safe formulation was found in the cytotoxicity investigation of the improved formulation. The optimized glibenclamide SNEDDS created a free-flowing solid powder (S-SNEDDS) on neusilin US2 as solid adsorbent.

Improved S-SNEDDS analysis and characterization. These investigations found high compatibility and considerable micrometric characteristics. The globule size of S-SNEDDS is nearly like liquid, indicating stability. Solid methods utilized in self-nanoemulsifying drug delivery systems may be considered to increase their efficacy and durability.

Within 30 minutes, S-SNEDDS demonstrated 91.24 0.86% drug release in vitro. Liquid SNEDDS are a similar drug that should be released at the recommended time. S-SNEDDS had a lower initial drug release than liquid SNEDDS, but after 30 minutes, it was almost the same. It assured that the solid form did not affect medication solubility. Thus, solidifying this medication delivery system is an alternate and acceptable method.

The in vivo trial of S-SNEDDS revealed better Cmax and AUC relative to the pure medication. It has been determined that S-SNEDDS may be a viable drug delivery method after evaluating and comparing numerous factors. Solid method improves medication delivery system longevity, homogeneity, and innovation.

Finally, S-SNEDDS is a potential nanocarrier for medication bioavailability and therapeutic effectiveness.

Itraconazole Formulation

Itraconazole is poorly soluble in water, causing absorption difficulties from inadequate dissolution. Before selecting the best formulation for S-SNEDDS, a number of formulations were created, examined, and reviewed. The generated liquid formulations exhibit good thermodynamic stability, emulsifying rate, and dissolving rate.

Characterization and assessment of several criteria guaranteed that the generated formulations could deliver effective medication therapy.

The improved itraconazole SNEDDS were chosen because they had smaller globules and dissolved at a rate that was acceptable. The improved formulation yielded globules measuring 141.20 ± 0.69 nm. Smaller globules may affect dissolving. Nano-sized globules in the formulation produced an optimum dissolving rate, which is a crucial driver of this drug delivery strategy.

The optimized itraconazole SNEDDS disintegrated in 30 minutes at a rate of 91.451.40%, whereas the placebo released 7.61.20% at the same time. Because of this system's adequate rate of medication dissolution, drug absorption is unhampered. The system aims to do this. An important sign of an oral drug delivery system is a formulation's acceptable rate of dissolution. The improved formulation's safety was confirmed by a cytotoxicity analysis. A free-flowing solid powder (S-SNEDDS) was produced by loading optimized itraconazole SNEDDS onto the chosen neusilin US2 as solid adsorbent.

Improved S-SNEDDS analysis and characterization. Solid shape is compatible and micromeritics investigation shows considerable results. Due to minimal variation, S-SNEDDS liquid formulation and globule size remained constant. The solid approach of this system is novel, making it a more convenient and distinctive method of medication administration. In vitro, 87.581.36% of the S-SNEDDS drug was released within 30 minutes. At the end of 30 minutes, the invitrodissolution rates of liquidSNEDDS and S-SNEDDS are comparable in drug release. It assured that the solid form did not affect medication solubility. Thus, this medication delivery system's robust method is an alternate and ideal option.

The in vivo study found that S-SNEDDS had a higher Cmax and AUC than the pure medication. In conclusion, S-SNEDDS has the potential to improve therapeutic efficacy, bioavailability, and drug dissolution rate.

Conclusion

The formulations enhanced drug solubility and formed solid powders. However, this study shows that nanoparticles greatly affect medication

solubility. It demonstrates that nano formulation may be a novel approach to increasing the bioavailability and therapeutic efficacy of weakly water-soluble medications. However, solidification has increased potency and durability. Stability and patient compliance were improved as a result of this method's solidification and increased dissolving rate. As a result, the solid method is innovative and dependable, making it a novel and cutting-edge drug delivery system that sets a new standard for other medications. As a result, the solid-self-nanoemulsifying drug delivery system is a powerful nanocarrier. For other medications that have issues with solubility and bioavailability, this approach may be novel.

References

1. Kalepu S, Nekkanti V. Improved delivery of poorly soluble compounds using nanoparticle technology: a review. *Drug Deliv Transl Res.* 2016;6(3):319-332.
2. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv Drug Deliv Rev* 2001;46:3-26.
3. McKim JM Jr. Building a tiered approach to in vitro predictive toxicity screening: a focus on assays with in vivo relevance. *Comb Chem High Throughput Screen.* 2010;13(2):188-206.
4. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. *Acta Pharm Sin B.* 2015;5(5):442-453.
5. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJ. Strategies to address low drug solubility in discovery and development. *Pharmacol Rev.* 2013;65(1):315-499.
6. Lin CH, Chen CH, Lin ZC, Fang JY. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. *J Food Drug Anal.* 2017;25(2):219-234.
7. Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems—an overview. *Acta Pharmaceutica Sinica B.* 2013;3(6): 361-372.

8. Maleki A, Kettiger H, Schoubben A, Rosenholm JM, Ambrogi V, Hamidi M. Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. *J Control Release*. 2017;262:329-347.
9. Cerpnjak K, Zvonar A, Gasperlin M, Vreker F. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. *Acta Pharm*. 2013;63(4):427-445.
10. Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. *Nat Rev Drug Discov*. 2014;13(9):655-672.
11. Reinholtz J, Landfester K, Mailander V. The challenges of oral drug delivery via nanocarriers. *Drug Deliv*. 2018;25(1):1694-1705.
12. Avasarala H, Dinakaran SK, Kakaraparthi R, Jayanti VR. Self Emulsifying Drug Delivery System for Enhanced Solubility of Asenapine Maleate: Design, Characterisation, In Vitro, Ex Vivo and In Vivo Appraisal. *Drug Dev Ind Pharm*. 2019; 9:1-37.
13. Toutain PL, Bousquet-Melou A. Bioavailability and its assessment. *J Vet Pharmacol Ther*. 2004;27(6):455-466.
14. Thomas VH, Bhattachar S, Hitchingham L, Zocharski P, Naath M, Surendran N, Stoner CL, El-Kattan A. The road map to oral bioavailability: an industrial perspective. *Expert Opin Drug Metab Toxicol*. 2006;2(4):591-608.
15. Vasvari G et al., Matrix systems for oral drug delivery: Formulations and drug release. *Drug Discov Today Technol*. 2018;27:71-80.
16. Xu W, Ling P, Zhang T. Polymeric Micelles, a Promising Drug Delivery System to Enhance Bioavailability of Poorly Water-Soluble Drugs. *J Drug Deliv*. 2013;2013: 1- 16.
17. Date T, Paul K, Singh N, Jain S. Drug-Lipid Conjugates for Enhanced Oral Drug Delivery. *AAPS Pharm Sci Tech*. 2019;20(2):41.10.1208/s12249-018-1272-0.
18. Zhou X, Zhao Y, Chen S, Han S, Xu X, Guo J, Liu M, Che L, Li X, Zhang J. Self-Assembly of pH-Responsive Microspheres for Intestinal Delivery of Diverse Lipophilic Therapeutics. *Biomacromolecules*. 2016;17(8):2540-2554.
19. Nguyen TX, Huang L, Gauthier M, Yang G, Wang Q. Recent advances in liposome surface modification for oral drug delivery. *Nanomedicine (Lond)*. 2016;11(9):1169- 1185.
20. Mu H, Holm R, Mullertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. *Int J Pharm*. 2013;453(1):215-224.
21. Ujhelyi Z, Vecseryes M, Feher P, Kosa D, Arany P, Nemes D, Sinka D, Vasvári G, Fenyvesi F, Varadi J, Bacska I. Physico-chemical characterization of self-emulsifying drug delivery systems. *Drug Discov Today Technol*. 2018;27:81-86.
22. Jain AK, Thanki K, Jain S. Novel self-nanoemulsifying formulation of quercetin: Implications of pro-oxidant activity on the anticancer efficacy. *Nanomedicine*. 2014;10(5):959-969.
23. Zhang Y, Wang J, Bai X, Jiang T, Zhang Q, Wang S. Mesoporous silicananoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. *Mol Pharm*. 2012;9(3):505-513.
24. Sharma M, Sharma R, Jain DK. Nanotechnology Based Approaches for Enhancing Oral Bioavailability of Poorly Water Soluble Antihypertensive Drugs. *Scientifica (Cairo)*. 2016;2016:1-11.
25. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. *Drug Discov Today*. 2007;12(23-24):1068- 1075.
26. Vaculikova E, Pokorna A, Placha D, Pisarcik M, Dedkova K, Peikertova P et al., Improvement of Glibenclamide Water Solubility by Nanoparticle Preparation. *J Nanosci Nanotechnol*. 2019;19(5):3031-3034.

27. Patel NR, Damann K, Leonardi C, Sabliov CM. Size dependency of PLGA-nanoparticle uptake and antifungal activity against *Aspergillus flavus*. *Nanomedicine (Lond)*. 2011;6(8):1381-1395.
28. Toutain PL, Bousquet-Melou A. Bioavailability and its assessment. *J Vet Pharmacol Ther*. 2004;27(6):455-466.
29. Thomas VH, Bhattachar S, Hitchingham L, Zocharski P, Naath M, Surendran N, Stoner CL, El-Kattan A. The road map to oral bioavailability: an industrial perspective. *Expert Opin Drug Metab Toxicol*. 2006;2(4):591-608.

Cite this article as:

Pal N. and Dubey V. (2025). Lipid Based Drug Delivery System for enhancing oral absorption of Biopharmaceuticals. *Int. J. of Pharm. & Life Sci.*, 16(7):15-25.

Source of Support: Nil

Conflict of Interest: Not declared

For reprints contact: ijplsjournal@gmail.com