

A Review on Hepatitis B Vaccination

Shubham R. Dhanad* and Dipak S. Bhukele

SND College of Pharmacy, Babhulgaon, Yeola, Maharashtra, India

Article info

Received: 20/11/2024

Revised: 19/12/2024

Accepted: 25/12/2024

© IJPLS

www.ijplsjournal.com

Abstract

The hepatitis B virus (HBV), which infects the liver and can induce cirrhosis and hepatocellular cancer, is the cause of hepatitis B. HBV is a global public health concern that leads to significant morbidity and mortality. The most efficient, safest, and least expensive means of controlling and preventing hepatitis B are vaccinations. Global coverage of three doses of the hepatitis B vaccine increased to 85% in 2019 from approximately 30% in 2000. The HBV carrier rate and hepatitis B-related morbidity and mortality have significantly decreased as a result of the successful implementation of hepatitis B vaccination programs. The significant achievements of the first anticancer and virus-like particle-based vaccine, the hepatitis B vaccine, are summed up in this article. Furthermore, outstanding questions from the past and future perspectives on hepatitis B vaccination—which is necessary for the worldwide prevention of HBV infection—are examined.

Keywords: Hepatitis B immunization, hepatitis B, and the hepatitis B virus, hepatitis B vaccination, HBV

Introduction

A major health concern is a persistent infection with the hepatitis B virus (HBV). Despite being widely used to treat chronic hepatitis B, antiviral medicines against HBV are not able to eradicate the virus from the host entirely. In order to manage HBV infection, vaccination against hepatitis B is the most significant technique. The path to developing the hepatitis B vaccine was paved with the unexpected discovery of "the Australia antigen" in 1964,¹ which was later named as "hepatitis associated antigen" in 1969 and formally changed to hepatitis B surface antigen (HBsAg) in 1972 following the electron microscope visualization of Dane particles (HBV virions) in 1970.

Therapeutic Hepatitis B Vaccine

It is well recognized that both innate and adaptive humoral and cellular immune responses are necessary for the host to eliminate HBV.

Hepatocytes' ability to eliminate virions is mostly reliant on T-cell responses. In order to trigger the humoral and/or cellular immune responses, significant attempts have been made to produce a therapeutic hepatitis B vaccine employing different HBV genes, such as P, C, S, and/or pre-S gene, and a variety of protein-antibody complex, peptide, and DNA-based approaches. Nevertheless, the clinical effectiveness of the therapeutic vaccines is restricted, despite the fact that they generated particular humoral and/or cellular immune responses in humans or experimental animals and shown encouraging therapeutic benefits in certain experimental animals.

***Corresponding Author**

E-mail: dhanadshubham11@gmail.com

Therefore, much more innovative research is needed to create potent therapeutic vaccines against disease.

Administration of Hepatitis B Vaccine

Hepatitis B vaccination dosage, schedule, and Injection Technique

At first, each dosage of the plasma hepatitis B vaccination included 20 or 40 μ g of HBsAg. The three-dose plan, which calls for three injections at 0, 1, and 6 months, respectively, is necessary for a complete course of immunization. The immunogenicity and protective effectiveness of a lower dosage of the hepatitis B vaccine have been investigated because of its high cost and limited supply, and they seem to be equally effective. But since recombinant HBsAg is infinitely available and HBsAg made in yeast has the same characteristics as natural HBsAg in human plasma (apart from glycosylation), the lower dose of the hepatitis B vaccination was no longer thought to be a smart idea.

The hepatitis B vaccination currently comes in doses ranging from 5 to 40 μ g of recombinant HBsAg adsorbed on aluminum hydroxide or aluminum phosphate adjuvant, which may be used flexibly in various subpopulation.. Typically, half of the adult dosage is administered to newborns, kids, and teenagers.⁴⁶ The three-dose regimen remains the immunization course. For infants delivered to HBsAgpositive and HBsAg-negative mothers in mainland China, the recommended dose was 10 μ g and 5 μ g, respectively.

Regardless of the mother's HBsAg status, the dose has been changed to 10 μ g for all newborns from 2011.

The hepatitis B vaccination should be injected intramuscularly into the deltoid muscle (for older children and adults) or the anterolateral location of the thigh (for infants and children under the age of two years). It is not advised to administer the vaccination by buttock injection since this approach seems to result in lower anti-HBs levels, which are likely related to obesity, and it may also damage the sciatic nerve. If the gluteal muscle must be employed, the upper outside quadrant of the buttock should be used instead of the center portion. Hepatitis B vaccination and HBIG (passive immunoprophylaxis) should be given at distinct locations when it comes to post-exposure prophylaxis.

The safety, length of protection, and immunogenicity of the hepatitis B vaccination

The initial hepatitis B vaccination's immunogenicity

Three doses are needed for a complete course of primary hepatitis B immunization, often spaced out over 0, 1, and 6 months. One early research found that anti-HBs seroconversion reached 59% two weeks after the first dose and 100% one month after the second dose in children aged 1.5–16 years who received the National Institute of Allergy and Infectious Diseases, USA, plasma vaccination (16 μ g HBsAg). After receiving a first injection of 5 or 10 μ g recombinant HBsAg, the majority of infants produce undetectable anti-HBs or anti-HBs <10 mIU/mL. One month after the initial dose, the seroconversion rate (anti-HBs \geq 10 mIU/mL) was only 3% for infants receiving the 5 μ g HBsAg vaccination, or 7–9% for those receiving the 10 μ g HBsAg vaccination. The rate of anti-HBs seroconversion.

Compared to babies and children, adults have a somewhat lower level of immunogenicity to the hepatitis B vaccination. Following three consecutive doses of 20 μ g HBsAg vaccination, the average seroprotection rate in adults is over 90%; it is comparatively greater in younger and lower in older individuals, and it falls to 60–70% in persons over 60 years of age.⁶¹ Within high-risk subpopulations, the immunogenicity of the hepatitis B vaccine varies greatly: it ranges from >90% seroprotection rate in young homosexual men and healthcare workers to as low as 20–60% in patients with immunocompromised conditions, such as dialysis or chronic renal disease, type 2 diabetes mellitus, transplant recipients, chronic liver disease, inflammatory bowel disease, HIV infection, and various cancers. Therefore, in immunocompromised individuals, a greater dose of the HBsAg vaccination is needed.

Following an initial hepatitis B vaccine, sustained protection

Research has shown that children and adults who receive the main hepatitis B immunization can benefit from long-term protection for over 30 years. The question remains whether the immunity against HBV is properly maintained in those at high risk of exposure to HBV, such as healthcare professionals, or in vaccinees who got a lower dosage of HBsAg (2.5 μ g, Merck's

Recombivax-HB). A booster dose does not seem to be necessary for recipients of primary hepatitis B vaccinations in infancy, as those with anti-HBs <10 mIU/mL or undetectable have a robust anamnestic immune response to HBsAg. Additionally, it is exceedingly uncommon for successfully vaccinated individuals to experience an authentic breakthrough infection of wild-type HBV with severe outcomes (acute hepatitis B or chronic carrier).

However, continued vaccination-related surveillance is needed to ascertain if the initial hepatitis B immunization can offer more extended or possibly lifetime protection.

Side effects

It has been shown via several research and extensive real-world applications that hepatitis B vaccinations are extremely safe.^{66,67} The most commonly reported adverse effects in both adults and children are local responses to the hepatitis B vaccination, which are typically moderate and temporary. With an estimated frequency of one instance in every 600,000 vaccine doses, anaphylaxis is the only significant adverse event that can happen after receiving the hepatitis B immunization.

There is no link between the hepatitis B immunization and fever episodes, sepsis, neurological problems, or neonatal mortality in newborns. Thus far, there is insufficient data to determine whether the hepatitis B vaccine is linked to other documented severe side effects, such as transverse myelitis, arthritis, Guillain-Barré syndrome, multiple sclerosis, optic neuritis, chronic fatigue syndrome, and autoimmune disorders. There is no proof that the hepatitis B vaccination and central demyelination are related. Serious side effects following hepatitis B immunization are quite uncommon. It is impossible to determine if a major adverse event that occurs after receiving the hepatitis B vaccination is the result of a real causal link or a coincidence. Thus, drawing firm conclusions from the case reports should be done with caution. The dissemination of equivocal findings by the press has a detrimental effect on the rollout of the hepatitis B vaccine. Nonetheless, it's important to keep an eye out for any possible health hazards related to the vaccinations.

Preventing HBV transfer from mother to child with hepatitis B immunization

Mothers with HBV infection carry a risk of HBV infection for their unborn children. Maternal high viral load (HBV DNA >106 IU/mL) or maternal positive for hepatitis B e antigen (HBeAg) is the primary risk factor for perinatal infection; HBeAg is a marker of high viral load and is closely linked with high viral load, as 80–90% of HBeAg-positive women had HBV DNA >106 IU/mL. In the absence of prophylactic interventions, 10–30% of infants born to carrier women with negative HBeAg are likely to develop chronic infection, whereas 70–90% of newborns born to HBV carrier mothers with positive HBeAg are chronically infected. As a result, stopping mother-to-child transmission is essential to managing chronic HBV infection. Prior to the hepatitis B vaccination becoming available, HBIG was developed and shown to be successful in avoiding HBV infection in perinatal patients. Subsequent research revealed that the combined administration of HBIG and the hepatitis B vaccine, as opposed to either treatment alone, provides a higher protective efficacy for infants born to women who tested positive for HBeAg. Therefore, it has been suggested that HBIG and/or the hepatitis B vaccine be given to infants whose mothers have tested positive for HBsAg in order to stop HBV from being passed from mother to child.⁸⁵ The effectiveness of concurrent use of HBIG and hepatitis B vaccine in newborn infants within 12 or 24 hours of birth is demonstrated in Table 2, where transmission has decreased in children of HBeAg-negative carrier mothers from 10–30% to practically 0% and in children of HBeAg-positive carrier mothers from 70–90% to 4–12%.⁸⁵ More recently, research has demonstrated that utilizing HBIG and the vaccine in infants of moms who tested positive for HBeAg within an hour of delivery significantly decreased the transmission rate to 1.3–2.0%.

Future Prospectus

The hepatitis B vaccine that is already on the market is safe and very successful in preventing HBV infection; however, the implementation of universal immunization and timely birth dose is not at all ideal. More information on the effectiveness of hepatitis B vaccine transported and stored in ambient environments will be

extremely valuable to improve the implementation of universal hepatitis B vaccination and timely birth dose in resource-constrained regions and remote areas, even though the vaccine appears to be thermostable and the vaccine stored at ambient temperature appears to have equivalent efficacy as the hepatitis B vaccine stored in cold chain. In order to achieve universal hepatitis B immunization, it will be more convenient to develop a two-dose vaccine that is appropriate to newborns and has comparable efficacy.

Conclusion

Since the introduction of the hepatitis B vaccine, scientific evidence suggests hepatitis B vaccination is one of the most cost-effective public health interventions available. Likewise, birth-dose hepatitis B vaccination has been shown to be cost-effective regardless of HBV endemicity.

Reference

1. Blumberg BS, Alter HJ, Visnich S. A "new" antigen in leukemia sera. *JAMA* N1965;191(7):541-46. doi: 10.1001/jama.1965.03080070025007.
2. Krugman S, Giles JP, Hammond J. Viral hepatitis, type B (MS-2 strain) prevention with specific hepatitis B immune serum globulin. *JAMA*. 1971;218(11):1665-70. doi: 10.1001/jama.1971.03190240019005
3. Leuridan E, Van Damme P. *Clin Infect Dis* 2011; 53:68.
4. World Health Organization (WHO). Implementation of hepatitis B birth dose vaccination — worldwide, 2016. Geneva, Switzerland: WHO, 2018.
5. Hunter P, Fryhofer SA, Szilagyi PG. Vaccination of Adults in General Medical Practice. *Mayo Clin Proc*. 2020 Jan;95(1):169-183.
6. Hepatitis B vaccines: WHO position paper – July 2017. *Wkly Epidemiol Rec*. 2017 Jul 07;92(27):369-392
7. H.S. Margolis Fact sheets for candidate diseases for elimination or eradication. Hepatitis B virus infection *Bull World Health Organ*, 76 (1998), pp. 152-153
8. J.H. Kao, D.S. Chen Global control of hepatitis B virus infection *Lancet Infect Dis*, 2 (2002), pp. 395-403
9. D.S. Chen From hepatitis to hepatoma: lessons from type B viral hepatitis *Science*, 262 (1993), pp. 369-370
10. W. Szmuness, C.E. Stevens, E.J. Harley, E.A. Zang, W.R. Oleszko, D.C. William, *et al.* Hepatitis B vaccine: demonstration of efficacy in a controlled clinical trial in a high-risk population in the United States
11. Beasley, L.Y. Hwang, G.C.Y. Lee, C.C. Lan, C.H. Roan, F.Y. Huang, *et al.* Prevention of perinatally transmitted hepatitis B virus infection with hepatitis B immune globulin and hepatitis B vaccine *Lancet*, 2 (1983), pp. 1099-1102

Cite this article as:

Dhanad S.R. and Bhukele D.S. (2025). A Review on Hepatitis B Vaccination. *Int. J. of Pharm. & Life Sci.*, 16(3): 39-42.

Source of Support: Nil

Conflict of Interest: Not declared

For reprints contact: ijplsjournal@gmail.com