

International Journal of Pharmacy & Life Sciences

Open Access to Researcher

Cleaning Validation of Equipments used in Manufacturing of Parenteral in

Pharmaceutical Industry

Harsha verma, Rakesh Patel and Jeevan Patel

School of Pharmacy, Dr. A. P. J. Abdul Kalam University, Indore (M.P.) - India

*Corresponding Author: patelcip@gmail.com

ABSTRACT

The cleaning validations of three different batches were performed in parenteral production line at Karnataka Antibiotics and Pharmaceuticals Limited, Bangalore. The cleaning validations were performed by evaluating parameters with the acceptance limits. Such as, Major parameters like total residual content, TOC analyzing, microbial count etc. Minor parameters like pH, conductivity, clarity of solutions, visual inspectionetc. The result of each parameter indicates the satisfactory completion of cleaning validation. It was concluded that the cleaning procedure followed is appropriate and which can maintain the drug residues in intend level as per company requirements. So the next batches, which manufacture on same equipments will free from all contaminations and cross contaminations like previous materials, detergents, microbial residues etc. Results have give the assurance about safety and purity for next batch materials.

INTRODUCTION

Validation is a quality system to ensure that quality is designed into a product or process. The FDA defines the term the validation as "establishing documented evidence, which provides a high degree of assurance that a specific process will consistently produce product meeting its pre-determined specification and quality attributes". Validation is a requirement that has always made sense from both a regulatory and quality perspective. In terms of quality philosophy, validation is defined as prevention-based activity, meaning it is performed to ensure product or process integrity. The rationale being that if more effort is placed on development and validation at the beginning and then there will be no chance for failure during product life. Each company indulged in pharmaceutical manufacturing have an overall policy, intentions and approach to validation, including the validation of production process, cleaning methods, analytical test methods, computerized system and an established validation master plan.

Importance: Validation activity must give some advantages or benefits. Which are as following. Reduction quality costs. Quality costs are reduced by two ways; Internal failure costs: like rejects, reworks, retests, scrap. External failure costs: like recall, complaints and returns due to quality related problems. Process optimization. Process optimization means make the process effective, efficient, perfect or useful as possible at minimum costs. Assurance of quality. Validation is an extension of quality assurance. So, control of the process is necessary to assure product quality. Safety. Validation can also result in increased operationsafety.

MATERIALANDMETHOD

MATERIAL—Ranitidine Hydrochloride

METHOD

product: Ranitidine Hydrochloride (2 ml ampoule) Nextproduct:Metaclopramide (2 mlampoule)

Table 1 Materials and those manufactures used in analysis of Ranitidine HCL.

	3
MATERIALS	MANUFACTURES
Ranitidine HCL	Saraca Laboratories, Hyderabad
Metaclopramide	Vaikunth Chemical Ltd., Ankleshwar
Ammonium Acetate	Qualigens Fine Chemicals, Mumbai
Glacial Acetic Acid	S D Fine Chem Ltd., Mumbai
Sucrose	S D Fine Chem Ltd., Mumbai
Methanol	Merck Specialities Pvt Ltd., Mumbai
Soya Bean Casein Digest Agar Media	Himedia, Mumbai

Table 2Equipments, ID no. and those manufactures used in analysis of Ranitidine HCL.

EQUIPMENTS	ID NO.	MANUFACTURES
Ampoule Filling Machine	SVP/AFM01/009	Petals Ltd.
Processing Reactor	SVP/APV02/015	Adams Ampoule
		Processing Reactor
Ultra Sonicator	QC/WET1/SONI/029	Flexit Laboratories.
		Pune
Weight Balance	QC/INS/BAL-1/001	Mettler-AE160.
		Switzerland
HPLC	QC/INS/HPLC-4/033	Shimadzu. Japan
	LC 2010A HT	
TOC	QC/INS/TOC/036	Shimadzu. Japan
	TOC-V CPH	
pH Meter	QC/INS/pH-2/045	EutechInstument
	pH TUTOR	
Binocular Microscope	QC/MB/BM/002	Olympus. Japan

Research Article CODEN (USA): IJPLCP

ISSN: 0976-7126 Harsha et al., 12(10):49-64, 2021

Incubator QC/MB/IC/016 Matri

Cleaning Procedure and Collection of Sample Filling machine: (Rinse sample)

- After completion of filling activities, filling machine parts were dismantled and transferred to washing area through hatch. All parts were washed thoroughly (one after the other) using the demineralized water with detergent. Filling machine parts were rinsed with sufficient demineralized water and WFI. Then 15-liter of WFI was collected in stainless steel vessel and all parts of filling machine like piston, silicon tubing, connecting rod, dosing needle etc. were dipped in vessel and sent through the sterilization (HPHV) in to sterile area. After sterilization the vessel was removed in sterile area and entire filling parts were dipped three times in collected WFI. Then WFI was taken in sterilized conical flask and labeled it and sent to quality control for analysis. (Swab sample)
- After cleaning of equipment, product contact surfaces could be swabbed to evaluate surface cleanliness like filling table or cabinets.
- They should not cause degradation of compound. The solvent used for swabbing should provide good solubility for the compound.
- Swab method does not cover the entire equipment. So, the sites are chosen carefully.
- The filling cabinet wall and table surface were cleaned with WFI using clean non-linting wet cloth.
- The drug particle was removed from the floor using non-fiber shedding plastic hand brush.

SamplingPoint

Table: 3 Sampling point of Ranitidine HCL.

Rinse sample (filling	Rinse sample	Swab sample
machine parts)		
Silicon tubing, connecting rod,	Processing reactor	Filling machine table surface
dosing needle		

HPLCMethod

It has excellent sensitivity with UV detectors, highly specific in nature, reproducible, automated and organic solvent may be used for swabbing should also not interfere with the analysis.

Mobile phase preparation: A mixture of HPLC grade methanol (850ml) and 0.1M Ammonium Acetate (150ml) was prepared. The mobile phase was filtered with 0.45 µm and degassed by ultra sonicator.

Preparation of 0.1M ammonium acetate:About 7.71 gm. ammonium acetate was dissolved in 200 ml distilled water. Then 1 ml glacial acetic acid of was added and pH was adjusted between 6.7-7.3. Finally the volume was made up to 1000 ml with distilled water.

Standard solution preparation: 30 mg of Ranitidine HCL standard was weighed and transferred in a 100 ml volumetric flask and dissolved in mobile phase. The volume was made up with mobile solvent. From that 5 ml solution was pipetted out in a 50 ml volumetric flask and made up the volume with mobile phase. (30-ppm solution)

.Dilution factor:30 mg in 100 ml (300 μ g / ml) (300 ppm)

5 ml in 50 ml (30 µg / ml) (30 ppm)

Research Article CODEN (USA): IJPLCP

ISSN: 0976-7126 Harsha et al., 12(10):11-18, 2021

Sample solution preparation: Rinse solution (filling machine part), was filtered through 0.45 μ m filter and from filtrate 20 μ l solution was injected in HPLC and chromatogram was recorded. The swab sample was dissolved in 10 ml of mobile phase and filtered through 0.45 μ m filter. From 20 μ l solution was injected in HPLC and chromatogram was recorded.

Experimental condition:

Quaternary gradient HPLC with UV detector

Column: - Grace smart RP 18 5µ (250mm x 4.6mm) stainless steel column. Injected volume: - 20 µl

Flow rate: - 1.5 ml/min Detector: - 322 nm

TOCMethod

TOC is widely used in pharmaceutical industries for various purposes.

TOC is determined by oxidation of an organic compound into CO₂.

TOC is used for analysis of detergents, endotoxins, biological media etc.

Here, TOC is used to determine total organic residue in rinse and swab sample.

Standard solutionpre paration: Accurately weighed quantity of USP sucrose RS was dissolved, in reagent water to obtain a solution having a concentration of 1.2 mg of sucrose per liter. Sample solutionpre paration: Final rinse solution of machine parts was directly analyzed in TOC analyzer. **Acceptance criteria:** For rinse solution there should be not more than 500 ppb.

Total MicrobialCount

It was carried out by using soya bean casein digest agar media. (Pour plate method).

Procedure:

- A.) 1 ml of rinse sample was added to each of two Petri plates and sterile soya bean casein digest agar media was poured to which previously inactivated or neutralized the effect of bacteriostatic or fungi static which may present in rinse sample solution. Tween and lecithin will inactivate the residue of disinfectants.
- B.) The medium was allowed to solidify and incubated the plate at 37°c for 5days.
- C.) The result was reported as colony forming units per 100 ml of rinse sample, which gave an estimate of the microbial load on that surface.

Acceptance criteria: Microbial count should be not more than 25 cfu / 100 ml.

Swab RecoveryStudy

This was done to determine the efficiency of swab testing procedure in terms of quantity of drugs recovered from the surface. A known concentration of drug was added to the surface of stainless-steel sheet of about 10×10 sqcm; and the surface was swabbed by same method as above. A cotton wool buds were soaked in water for injection and used for swab the surface. 100 mg of drug was weighed and spread in 10×10 sqcm. Now this was swabbed and placed in the glass container in which it contains 10 ml of water for injection. The content in the container was sonicated for 15 min and the solution was filtered using membrane filter (0.45μ) . Now this sample was sent to quality control to estimate the quantity of drugs recovered from the surface.

ISSN: 0976-7126 Harsha et al., 12(10):11-18, 2021

Equation: Avg. area of sample x std. weight x100

Avg. area of std.

Acceptance Criteria: Recovery should be not less than 70%. Incase this recovery is not achievable; consistency of recovery should be demonstrated.

Establishment of Acceptance Criteria: An acceptable limit is based on therapeutic daily dose. It is generally used for final product change over API process. A limit was established based according to the following equation.

Maximum allowable carryover:

 $MACO = SD \times BS \times SF$

LDD

Where, MACO= maximum allowable carryover LDD=largest daily dose of next product SD= single therapeutic dose of previous product BS= batch size of next product SF= safety factor of parenteral

In this case, previous product is Ranitidine HCL 50 mg Next product is Metoclopramide 10 mg SD = 50 mg

> BS = 400,000 m / 2.104 kg of bulk SF = 1/10000LDD = 30 mg

> > MACO= 50 X 400000 X 1 30 X 10000 = 66.66 mg present in 2.104 kg

> > > = 31.68 mg per 1 kg

= 31.68 ppm

Acceptance criteria: There should be not more than 31.68 ppm of Ranitidine HCL in next batch.

RESULT

Product change overfrom

product: Ranitidine HCL (2 ml ampoule) Nextproduct: Metaclopramide (2 mlampoule)

CHROMATOGRAM HPLCCHROMATOGRAM

KARNATAKA ANTIBIOTICS & PHARMACEUTICALS LIMITED, BANGALORE

ANALYSIS OF RANITIDINE HCL: BLANKSOLUTION

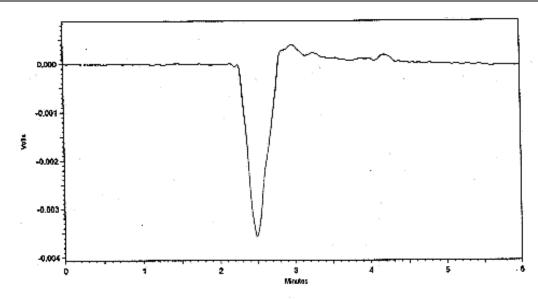


Figure:1 Chromatogram of Blank Solution of Ranitidine HCL. RANITIDINE HCL: STANDARDSOLUTION

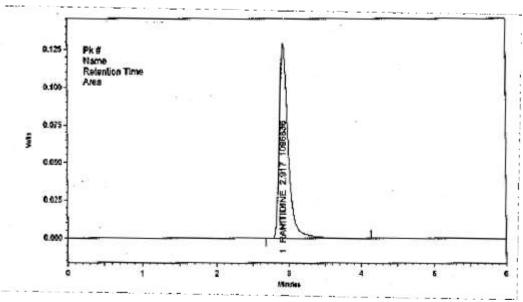


Figure: 2 Chromatogram of Standard Solution of Ranitidine HCL.

Table: 4 Summary of System Suitability Parameters of Ranitidine HCL.

No. of	Retention	Area	Theoretical	Name	Asymmetry
injections	time (min)	(mV.s)	plates		
1	2.892	1087521	3026.88	RanitidineHCL	1.44
				standard	

Research Article CODEN (USA): IJPLCP ISSN: 0976-7126 Harsha et al., 12(10):11-18, 2021

CODET (CDI	1). 101 1101			11415114 & 411, 12(10).11	1 10, 2021
2	2.900	1089991	2946.99	RanitidineHCL standard	1.52
3	2.917	1098851	2965.06	RanitidineHCL standard	1.53
4	2.917	1095773	2949.56	RanitidineHCL standard	1.53
5	2.925	1097097	2926.47	RanitidineHCL standard	1.48
6	2.925	1100660	2919.53	RanitidineHCL standard	1.48
Avg.	2.912	1094982	2955.75	RanitidineHCL standard	1.50
% RSD	0.470	0.471	1.304	RanitidineHCL standard	2.465

RANITIDINE HCL: RINSE SAMPLE OF FILLING MACHINEPART

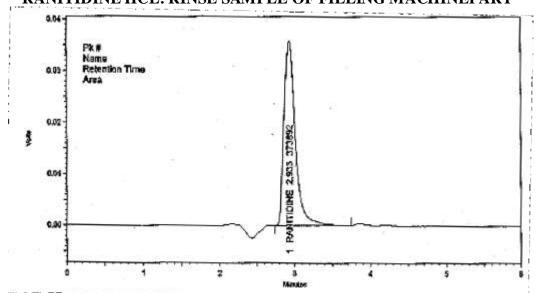


Figure: 3 Chromatogram of Rinse Sample of Filling Machine Part of Ranitidine HCL.

Table: 5 Results of Chromatogram of Rinse Sample of Filling Machine Part of Ranitidine HCL.

No. of injections	Retention time (min)	Area (mV.s)	Theoretical plates	Name	Asymmetry
1	2.933	373892	1978.04	Ranitidine HCL	1.36
2	2.933	373422	2028.87	Ranitidine HCL	1.39
Avg.	2.933	373657	2003.455	Ranitidine HCL	1.375

RANITIDINE HCL: RINSE SAMPLE OF PROCESSINGREACTOR

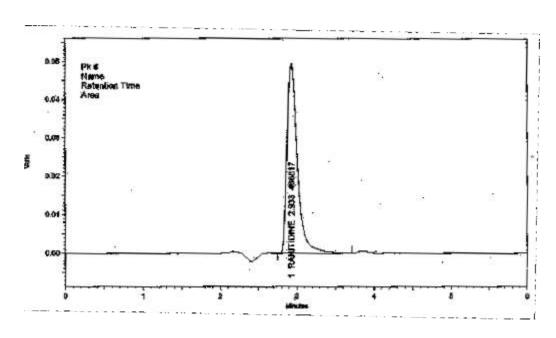


Figure: 4 Chromatogram of Rinse Sample of Processing Reactor of Ranitidine HCL

Table: 6 Results of Chromatogram of Rinse Sample of Processing Reactor of Ranitidine HCL.

No. of injections	Retention time (min)	Area (mV.s)	Theoretical plates	Name	Asymmetry
1	2.933	466817	2482.95	Ranitidine HCL	1.50
2	2.925	466813	2437.55		1.62
Avg.	2.929	466815	2460.25		1.56

RANITIDINE HCL: SWAB SAMPLE OF FILLING MACHINETABLE

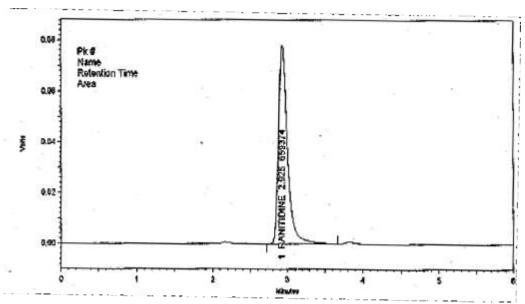


Figure: 5Chromatogram of Swab Sample of Filling Machine table of Ranitidine HCL.

Table:7 Results of Chromatogram of Swab Sample of Filling Machine table of Ranitidine HCL.

No. of injections	Retention time (min)	Area (mV.s)	Theoretical plates	Name	Asymmetry
1	2.925	659374	3012.67	Ranitidine HCL	1.56
2	2.925	662907	3111.71	Ranitidine HCL	1.49
Avg.	2.925	661140.5	3062.19	Ranitidine HCL	1.525

RANITIDINE HCL: SWAB RECOVERY PERCENTAGE OFSTANDARD

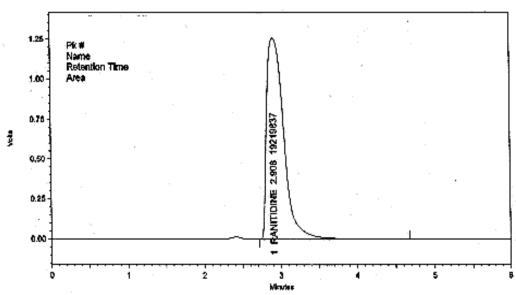
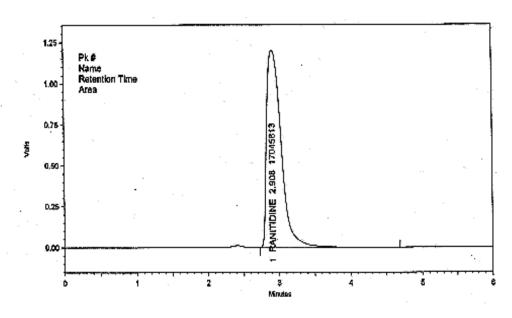
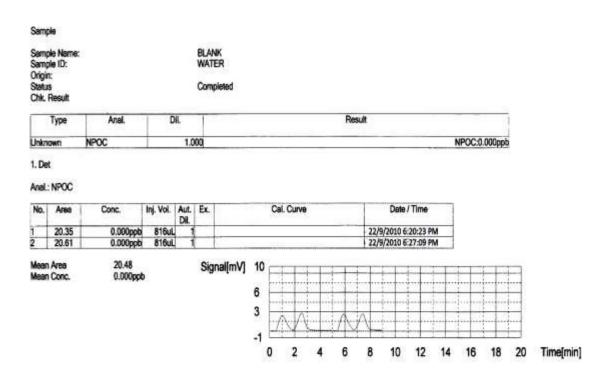


Figure: 6 Chromatogram of Swab Recovery Percentage of Standard Ranitidine HCL.

Table: 8 Results of Chromatogram of Swab Recovery Percentage of Standard Ranitidine HCL.

No. of	Retention	Area (mV.s)	Theoretical	Name	Asymmetry
in je ctions	time (min)		plates		
1	2.908	19219837	1038.53	Ranitidine HCL	1.81
2	2.900	18758038	1053.95		1.91
Avg.	2.904	18988937.5	1046.24		1.86

RANITIDINE HCL: SWAB RECOVERY PERCENTAGE OFSAMPLE

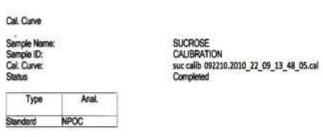
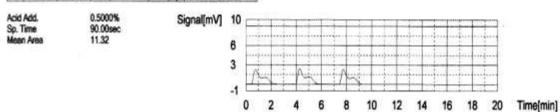

Figure: 7 Chromatogram of Swab Recovery Percentage of Sample.

Table: 8 Results of Chromatogram of Swab Recovery Percentage of Sample Ranitidine HCL.

No. of	Retention	Area (mV.s)	Theoretical	Name	Asymmetry
injections	time (min)		plates		
1	2.908	17045813	1171.00	Ranitidine	1.81
				HCL	
2	2.900	17971587	1109.38		1.90
Avg.	2.904	17508700	1140.19		1.855


TOC ANALYSIS: ANALYSIS OF RANITIDINEHCL

Conc: 0.000ppb

No.	Area	Inj. Vol.	Aut. Dil.	Rem.	Ex.	Date / Time
1	11.11	816uL	1	******		22/9/2010 1:55:41 PM
2	11.52	816uL	1	******		22/9/2010 2:01:55 PM
3	10.65	816uL	1	******	E	22/9/2010 2:08:05 PM

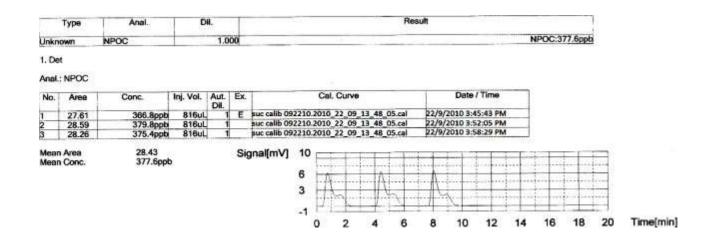


Figure: 8 TOC Report of Ranitidine Sample

Table:9 EVALUATED PARAMETERS WITH ACCEPTANCE LIMITS AND OBTAINED RESULTS OF RANITIDINE HCL

Sr. No.	Test conducted	Acceptance criteria	Result
1.	Visual inspection of cleaned parts.	No powder should be	No powder was seen
		present.	on clean machine
			parts.
2.	Clarity of final rinse solution.	Rinse solution should	Rinse solution was
		be	clear, free from fiber
		clear, free from fiber	and extraneous matter.
		and extraneous matter.	
3.	Traces of detergent inrinse solution.	Should be absent.	Absent.
4.	pH of final rinsesolution.	Between 6 to 8.5	pH of finalrinse
			solution was 7.4
5.	Residual content in ppm.	NMT 31.68ppm	09.17 ppm
	Rinse sample of filling machine part.	NMT 31.68ppm	11.46 ppm
	Rinse sample of processingreactor.	NMT 31.68ppm	16.24 ppm
	Swab sampleof		
	filling machine table.		
6.	Total microbial count.	NMT 25 CFU / 100 ml	8 CFU / 100 ml
	-Rinse and swab sample.		
7.	TOC ofRinse sample of filling	NMT 500ppb	368.8ppb
	machine part.	NMT 500ppb	377.6ppb
	Rinse sampleof		
	processing reactor.		
8.	Swab recovery percentage.	NLT 70 %	92.20 %

SUMMARY AND CONCLUSION

Cleaning validation studies were carried out at Karnataka Antibiotics and Pharmaceuticals Limited, located in Bangalore. In parenteral manufacturing unit, the three different product's cleaning validations were done. All the results were within acceptance limits as shown below. Product change overfrom

product: Ranitidine Hydrochloride (2 ml ampoule) Nextproduct Metaclopramide (2 mlampoule)

Table: 10 Tests to be conducted, acceptance criteria and obtained results of product change over from Ranitidine HCl to Metaclopramide.

Sr. No.	Test conducted	Acceptance criteria	Result
1.	Visual inspection of cleaned parts.	No powder should be	No powder was seen
		present.	on clean machine
			parts.
2.	Clarity of final rinse solution.	Rinse solution should	Rinse solution was
		be	clear, free from fiber
		clear, free from fiber	and extraneous matter.
		and extraneous matter.	
3.	Traces of detergent inrinse solution.	Should be absent.	Absent.
4.	pH of final rinsesolution.	Between 6 to 8.5	pH of finalrinse
			solution was 7.4
5.	Residual content in ppm.	NMT 31.68ppm	09.17 ppm
	Rinse sample of filling machine part.	NMT 31.68ppm	11.46 ppm
	Rinse sample of processingreactor.	NMT 31.68ppm	16.24 ppm
	Swab sampleof		
	filling machine table.		
6.	Total microbial count.	NMT 25 CFU / 100 ml	8 CFU / 100 ml
	-Rinse and swab sample.		
7.	TOC ofRinse sample of filling	NMT 500ppb	368.8ppb
	machine part.	NMT 500ppb	377.6ppb
	Rinse sample of		
	processing reactor.		
8.	Swab recovery percentage.	NLT 70 %	92.20 %

The cleaning validations of three different batches were performed in parenteral production line at Karnataka Antibiotics and Pharmaceuticals Limited, Bangalore. The cleaning validations were performed by evaluating parameters with the acceptance limits. Such as, Major parameters like total residual content, TOC analyzing, microbial count etc. Minor parameters like pH, conductivity, clarity of solutions, visual inspectionetc. The result of each parameter indicates the satisfactory completion of cleaning validation. It was concluded that the cleaning procedure followed is appropriate and which can maintain the drug residues in intend level as per company requirements.

So the next batches, which manufacture on same equipments will free from all contaminations and cross contaminations like previous materials, detergents, microbial residues etc. Results have give the assurance about safety and purity for next batch materials.

REFERENCES

- 1. USFDA, General Principles of Validation, Rock Ville: MD, Centre for drug evaluation and research (CDER) may1987.
- 2. Available from URL:
- 3. http://www.fda.gov/cder/guidance/pv.htm. Accessed on 28/1/2011.
- 4. PotdarMA. Pharmaceutical quality assurance.2nd edition. pune; Niraliprakashan: 2009. p.8.23-8.24.
- 5. Fourman GL, Mullen MV, Eli lilly& co. Cleaning validation acceptance limits for pharmaceutical manufacturing operations. Pharm Technol1993;17:54-60.
- 6. Mirza T, George RC, Bodenmiller JR, Belanich SA. Capillary GC assay of residual mathenaminehippurate in equipment cleaning validation swabs. J Pharm Biomed Anal 1998: 16(6):939-50.
- 7. Available from URL:http://www.fda.gov/ICECI/Inspections/InspectionGuides/ucm074922.htm.
- 8. Accessed on 30/1/2011.
- 9. Available from URL:
- 10. http://www.reg_health_canada_cv_guide.pdf. Accessed on 30/1/2011.
- Mendehall DW. The critical issue in designing a cleaning validation program in pharmaceutical industry. Drug Dev Ind Pharm1989;15(13):2105-14.
- 12. Establishing perfect cleaning validationprogram: Available from URL:
- 13. http://www.tga.gov.au//docs//htmal//gmpcodga.htm. Accessed on 2/2/2011.
- 14. Available fromURL:
- 15. http://apic.cefic.org/pub/4CleaningVal9909.pdf. Accessed on 2/2/2011.
- 16. Sandoz AG, Zeller AO. Aspects of validating clean in place procedure for processing equipment used to manufacture creams and ointments. Pharm Technol 1993;17(10):70-80.
- 17. Indian Pharmacopoeia, Government of India, Ministry of Health and Family Welfare, 6th edition, published by The Indian Pharmacopoeia Commission Ghaziabad, 2010;2,3:p.1123-5, 1199-2000,2043-5.
- 18. Available from URL:http://www.rxmed.com/b.main/b2.pharmaceutical/b2.1.monographs/CPS-
- 19. %20Monographs/CPS-%20(General%20Monographs%20Z)/ZANTAC%2075.html. Accessed on 7/2/2011.
- 20. Available from URL: