

# International Journal of Pharmacy & Life Sciences

Open Access to Researcher

©2010, Sakun Publishing House and licensed by IJPLS, This is Open Access article which permits unrestricted non-commercial use, provided the original work is properly cited.



# Genome-wide Association Mapping (GWAS) for Anther Extrusion in Bread Wheat

(Triticum aestivum L.) Using DArT-SNP Markers

Parveen Malik<sup>1\*</sup>, Ravi Kant Tiwari<sup>2</sup>, Mohd Nayeem Ali<sup>1</sup>, Vikrant Kumar<sup>1</sup> and Suraj Singh<sup>1</sup>

Assistant Professor Department of Agriculture<sup>1</sup>
Shri Ram College, Muzaffarnagar (UP) 251001
Department of Genetics & Plant Breeding<sup>2</sup>
C.C.S. University, Meerut

## **Article info**

Received: 10/07/23

Revised: 19/08/2023

Accepted: 21/09/2023

© IJPLS

www.ijplsjournal.com

## Abstract

Association Mapping (AM) for anther extrusion trait was done in a subset of 190 diverse genotypes of SWRS material grown at University Research Farm and showed a wide range of variation. The growth habit, country of origin and AE (Anther extrusion) scores of all 190 genotype. The range of AE score of the 190 wheat genotypes differ from 0.47 to 2.97 with a mean value of 1.23 and a SD of 0.36 %. In association analysis based on mean values over environments, significant association (p<0.01) of different traits (AE, DTH, DTA, DTM). DTH was observed for a total of 181 DArT SNP marker loci following GLM. Anther Extrusion was observed for a total of 177 DArT SNP marker loci following GLM.

Key Words: Triticum aestivum L, MTA, Agronomic traits, DArT-SNP

## Introduction

Bread wheat (Triticum aestivum L) is one of the most important domesticated food crops of the world. It occupies 17% (one sixth) of crop acreage world over, and about ~771 million tons total production in the world and ~95 million tons in the India (FAOSTAT Database). Association mapping analysis, an alternative method, has been used extensively in a variety of organism to marker-trait associations (DeWan et al., 2006; Karlsson et al., 2007) and uses natural populations or germplasm collections instead of segregating bi-parental populations. In wheat, results of several AM studies have been reported (Jing et al., 2007; Peng et al., 2009, Kulwal et al., 2012; Mir et al., 2012).

In bread wheat, numerous studies have been performed to investigate pollen dispersal outside

the floret. It appears to depend on anther extrusion, size of anthers, the opening of the glumes, the awnless of the lemma, the size of the stigma, the duration of the stigma receptivity, the number of pollen grains per anther, the longevity of the pollen grain, and other factors (Langer *et al.*, 2014; Boeven *et al.*, 2016; Muqaddasi *et al.*, 2017).

# \*Corresponding Author

Email:parveenmalikccsu@gmail.com

ISSN: 0976-7126 Malik *et al.*, 14(8-9):43-53, 2023

Wheat belongs to subtribe Triticinae, tribe Triticeae of family Poaceae. It is a segmental allohexaploid (2n = 6x = 42), with comprises diploid  $(2n=2\times=14; AA)$ , tetraploid  $(2n=4\times=28;$ AABB) and hexaploid  $(2n=6\times=42; AABBDD)$ species. The hexaploid wheat, which is also known as 'bread wheat' or as 'common wheat', originated through natural hybridization of three diploid species in two stages, 1) T. urartu (AA genome) hybridized with an unknown diploid species probably Aegilops speltoides (BB genome) that generate tetraploid wheat (AABB genome) after chromosomes doubling followed by 2) hybridization with a third ancestral species, A. tauschii (DD genome). It is well known that the three sub-genomes of hexaploid wheat are organized into seven homoeologous (partial homologous) groups, each homoeologous group having three closely related homoeologous chromosomes, one each from the three subgenomes (Kihara, 1944). Bread wheat has genome size of 16 Gb which ~8-fold larger than that of maize and 40-fold larger than that of rice (Bennett and Leitch 2005).

## Materials and Methods Genetic materials

The association mapping panel comprised sub-set of 190 diverse genotypes of a spring wheat reference set (SWRS) of bread wheat procured from CIMMYT gene bank, Mexico (Appendix 1). Genotyping data and markers

A set of 17,937 polymorphic SNP markers generated using DArT-seq, at Diversity Array Technology Pvt. Ltd. Australia under the "Seed for Discovery" project of CIMMYT Mexico, was used for genotyping of all the 246 accessions of bread wheat. The markers were mapped on chromosomes using DArT PL's consensus map of wheat based on >100 crosses. The map (version 4) has 110,000 markers including ~5,000 original DArT markers, the remaining being DArTseq markers. These markers are spreaded over all the 21 chromosomes. The 8637 SNPs were mapped on chromosomes, of which 2973 SNPs belonged to a sub-genome, 4505 SNPs belonged to the B sub-genome and 1159 SNPs belonged to the D sub-genome and remaining 9300 SNPs were unmapped.

## Field experiment

The SWRS (Spring Wheat Reference Set) populations having 190 selected genotypes were sown on 12 November, 2018. Seeds of the Wheat lines were hand dibbled in dry soil, each genotype was raised in a plot comprising three lines, each line being 1.5 m long with line-to-line distance of 20 cm, genotype to genotype distance was carried 40 cm of each genotype in two replications under simple lattice design. The uniform plant stand was maintained by thinning and gap filling. NPK fertilizers were applied at the rate of 100:50:50 kg/ha. While P and K were applied basally during sowing, N was applied in three splits as top dressing, first ½ parts during sowing and 1/4-1/4 part two times after CRI stage and during heading. Insect and weed control measures were applied periodically as required.

## Recording of data on anther extrusion

The plants of 190 wheat genotypes were evaluated in anther retention (AR; number of non-extruded anthers) score on field in 5–10 days post-anthesis in February and March 2019 by observing the anthers retained inside the four pairs of primary and secondary florets sampled from the central portion of four spikes per plot. Anthers extrusion was calculated by subtracting the number of retained (non-extruded) anthers from 24, since the total number of anthers housed by eight florets is 24 (4 spikelets × 2 lateral florets × 3 anthers) as described in Muqaddasi *et al.*, (2016).

# Statistical analysis of the phenotypic data

The estimates of descriptive statistics including mean, range, standard error, correlation and distribution of genotypes for anther extrusion trait were performed using SPSS version 17.0

## **Population structure analysis**

The model-based methods have been more dominant as procedures for inference about population structure, mostly with implementation of Bayesian clustering and maximum-likelihood techniques in programs such as STRUCTURE, ADMIXTURE (Alexander *et al.*, 2009).

# GWAS analysis using GLM (General Linear Model) and MLM (Mixed Linear Model)

TASSEL v. 3.0 was used for this purpose using both General Linear Model (GLM) and Mixed Linear Model (MLM). For GLM, population structure (the Q model) without familial

ISSN: 0976-7126 Malik *et al.*, 14(8-9):43-53, 2023

relatedness (the K model) was used, whereas for MLM, both population structure and the familial relatedness (Q + K model) were used (**Yu** et al., **2006**). The general equations for GLM and MLM were y = Xa + e and y = Xa + Qb + Zu + e, respectively (**Tadesse** et al., **2015**), where y is the vector for phenotypes, a is the vector for marker fixed effects, b is the vector of fixed effects, u is the vector of random effects (the kinship matrix)

and e is the vector of residuals. Distance matrix derived from cladogram function was converted into a similarity matrix using TASSEL (**Kang** et al., 2008). X is the matrix for marker genotypes, Q is the Q-matrix obtained from the STRUCTURE software and Z is an identity matrix. Significance of marker-trait associations (MTAs) was determined at  $P \le 0.001$ 

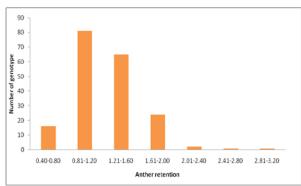
**Appendix I.** A list of 190 diverse genotypes of spring wheat reference set (SWRS) that was used as the association mapping panel for GWAS.

| Genotype | Name                   | Genotype | Name                         |
|----------|------------------------|----------|------------------------------|
| SWRS1    | ZAMBESI                | SWRA43   | VEE/PJN/ /2*TUI/3/WH576      |
|          | GRAY JD738             |          | MUNI A/3/RUFF/FGO/YAV79/4/PA |
| SWRS2    | GRAT JD/36             | SWRA44   | STOR                         |
| SWRS3    | GRAY JD930             | SWRA45   | (TAUS)/4/WEAVER/5/IRENA      |
| SWRS4    | GRAY JD1024            | SWRA46   | PBW343/TONI                  |
| SWRS5    | GRAY JD1032            |          | VEE#8//JUP/BJY/3/F3.71/TRM   |
| SWRS6    | GRAY JD1102            | SWRA47   | /4/2*WEAVER/5/HAHN/2*WE      |
| SWRS7    | GRAY JD1196            | SWRA48   | URES/BOW/ /OPATA/3/PASTOR    |
| SWRS8    | GRAY JD1278            | SWRA49   | CHAPIO                       |
| SWRS9    | C-40-1                 | SWRA50   | TUI                          |
| SWRS10   | MOSKOVSKA              | SWRA51   | DUCULA                       |
| SWRS11   | YA 21 VIR 48760        | SWRA52   | TNMU/3/JUP/BJY/ /SARA        |
| SWRS12   | W-33-A                 | SWRA53   | BT-SCHOMBURGK                |
| SWRS13   | GONG JIAO 279          | SWRA54   | EXCALIBUR                    |
| SWRS14   | BW110                  | SWRA55   | BARUNGA                      |
| SWRS15   | TOKSUN SPRING 2 ST-122 | SWRA56   | KRICHAUFF                    |
| SWRS16   | YANTAGBAY              | SWRA57   | WESTONIA                     |
| SWRS17   | CItr 4309              | SWRA58   | BATAVI A                     |
| SWRS18   | JENKIN                 | SWRA59   | WW425                        |
| SWRS19   | MARGARITOVO            | SWRA60   | SITTA                        |
| SWRS20   | REWARD                 | SWRA61   | CETTLA                       |
| SWRS21   | DORSETT-PH-3892        | SWRA62   | TUI                          |
| SWRS22   | ROJO BARBON            | SWRA63   | JUN/BOMB                     |
| SWRS23   | DORSETT-PH-6955        | SWRA64   | TAM200/TUI                   |
| SWRS24   | DORSETT-PH-7017        | SWRA65   | SUPER SERI #1                |
|          |                        |          | CROC_1/AE.SQUARROSA(205)//K  |
| SWRS25   | DORSETT-PH-6927        | SWRA66   | AUZ                          |
| SWRS26   | DORSETT-PH-7150        | SWRA67   | HXL7573/2*BAU                |
| SWRS27   | Citr 14998             | SWRA68   | DHARWAR DRY                  |
| SWRS28   | /BUC/PVN/3/YR/4/TRAP#1 | SWRA69   | PAVON TALL                   |
|          | KAUZ/ /ALTAR           |          |                              |
| SWRS29   | 84/AOS/3/KAUZ          | SWRA70   | KAUZ TALL                    |
| SWRS30   | OTUS                   | SWRA71   | NESSER TALL                  |
| SWRS31   | SKAUZ82/FCT            | SWRA72   | PASTOR/BAV92                 |
|          |                        |          | CNDO/R143//ENTE/MEXI_2/3/AEG |
| SWRS32   | SIRKKU                 | SWRA73   | ILOPS                        |
| SWRS33   | OTUS/TOBA97            | SWRA74   | BERKUT                       |

| SWRS34    | BONASA                    | SWRS75      | VOROBEY                     |
|-----------|---------------------------|-------------|-----------------------------|
| SWRS35    | KAUZ//BOW/NKT             | SWRS76      | ALT AR 84/AE.SQUARROS A     |
| SWRS36    | ECIJA:AE                  | 5 W K5 / 0  | (224)//2*YACO/3/BAV92       |
| D W ND 30 | LCI371.71L                | SWRS77      | MILAN/KAUR//DHARWAR         |
| SWRS37    | SW89.5181/KAUZ            | SWKS//      | DRY/3/BAV92                 |
| SWRS38    | MINO                      | SWRS78      | KABY/BAV92/3/CROC_1/AE.SQU  |
| SWRS39    | CHIBIA/PASTOR//CHIBIA     | 5 W 165 7 0 | ARROS A (224)//OPATA        |
| SWRS40    | VERDIN                    | SWRS79      | BJY/COC//PRL/BOW/3/MILAN/KA |
| SWRS41    | CHIBIA/PASTOR//CHIBIA     | 5 111577    | UZ/4/BAV92                  |
| SWRS80    | ATTILA/BAV92//PASTOR      | SWRS116     | SAKHA 69                    |
| SWRS81    | OMSKAYA-32                | SWRS117     | SALAMANCA 75                |
| SWRS82    | KE FENG 2                 | SWRS117     | SAN CAYET ANO S 97          |
| SWRS83    | NEW LONG MAI 19           | SWRS119     | TANORI F 71                 |
| SWRS84    | LONG MAI 23               | SWRS120     | TINAMOU I1                  |
| SWRS85    | AC VISTA                  | SWRS121     | TOBARITO M 97               |
| SWRS86    | CHUM18/SERI               | SWRS121     | ZAMINDAR 80                 |
| SWRS87    | SABUF/4/ALTAR             | SWRS123     | CNO/7C                      |
| 5 WK507   | 84/AE.SQUARROSA           | SWRS124     | FIRETAIL                    |
|           | /YACO/3/CROC_1AE.SQUARR   | SWRS125     | PFAU/VEE#9//URES            |
|           | OSA                       | 5 W K5125   | TTAO/ VEE#9/ / ORES         |
|           | SABUF/4/ALTAR             |             |                             |
|           | 84/AE.SQUARROS A          |             |                             |
| SWRS88    | PASTOR/3/KAUZ*2/OPATA/    | SWRS126     | BJY/COC/                    |
| B 111800  | /KAUZ                     | 5 ((16)120  | /PRL/BOW/3/MILAN/KAUZ/4/BA  |
| SWRS89    | CROC_1/AE.SQUARROSA       |             | 92                          |
|           | (205)/                    |             |                             |
|           | /KAUZ/3/SASIA             | SWRS127     | CHIL/BOMB                   |
| SWRS90    | CROC_1/AE.SQUARROSA       | SWRS128     | REDWING                     |
|           | (205)/                    |             |                             |
| SWRS91    | CROP_1/AE.SQUARROS A      | SWRS110     | LERMA ROJO 64A              |
|           | (205)/                    | SWRS111     | OROFEN 60                   |
|           | /BORL95/3/ATTILA          | SWRS112     | PAVON F 76                  |
|           | SQUARROSA (TAUS)          |             |                             |
|           | /4/WEAVER                 |             |                             |
| SWRS92    | CHEN/AEGILOPS             | SWRS113     | PIRSABAK 85                 |
|           | SQUARROSA (TAUS)/         | SWRS114     | POTAM S 70                  |
|           | /BCN/3/CMH81.38/2*KAUZ    |             |                             |
| SWRS93    | CROC_1/AE.SQUARROSA (205) | SWRS115     | SAFED LERMA                 |
|           | //KAUZ/3/PASTOR           | SWRS116     | SAKHA 69                    |
| SWRS94    | ESDA/ /ALT AR             | SWRS117     | SALAMANCA 75                |
|           | 84/AE.SQUARROS A          | SWRS118     | SAN CAYETANO S 97           |
|           | (211)/3/ESDA/4/CHOIX      |             |                             |
| SWRS95    | CROC_1/AE.SQUARROSA       | SWRS119     | TANORI F 71                 |
|           | (205)/                    | SWRS120     | TINAMOU I1                  |
|           | /KAUZ/3/ATTILA            |             |                             |
| SWRS96    | FISCAL                    | SWRS121     | TOBARITO M 97               |
| SWRS97    | CHIBIA/4/PGO/ CROC_1/     | SWRS122     | ZAMINDAR 80                 |
|           | AE.SQUARROSA(224)/3/2*BOR | SWRS123     | CNO/7C                      |
|           | L95                       |             |                             |

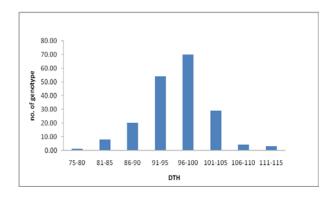
| SWRS98             | EXCALIBUR                             | SWRS124            | FIRETAIL                        |
|--------------------|---------------------------------------|--------------------|---------------------------------|
| SWRS99             | JANZ                                  | SWRS125            | PFAU/VEE#9//URES                |
| SWRS100            | KULIN                                 | SWRS126            | BJY/COC/                        |
| SWRS101            | CUNNINGHAM                            |                    | /PRL/BOW/3/MILAN/KAUZ/4/BAV     |
|                    |                                       |                    | 92                              |
| SWRS102            | WEAVER                                | SWRS127            | CHIL/BOMB                       |
| SWRS103            | MILAN                                 | SWRS128            | REDWING                         |
| SWRS104            | CHIBIA                                | SWRS129            | D67.2/P66.270/ /AE.SQUARROSA    |
| SWRS105            | PAPAGE M 86                           |                    | (320)/3/CUNNINGHAM              |
| SWRS106            | KAUZ                                  | SWRS130            | D67.2/P66.270/ /AE.SQUARROSA (  |
| SWRS107            | BAW898                                |                    | 320)/3/CUNNINGHAM               |
| SWRS108            | CUMHURI YET 75                        | SWRS131            | PARUS/3/CHEN/AE.SQ//2*OPATA     |
| SWRS109            | GONEN                                 | SWRS132            | ATTILA/3*BCN/3/CROC_1/AE. AQ    |
| SWRS110            | LERMA ROJO 64A                        |                    | UARROS A(224)//OPATA            |
| SWRS111            | OROFEN 60                             | SWRS132            | ATTILA/3*BCN/3/CROC_1/AE.AQ     |
|                    |                                       |                    | UARROS A                        |
| SWRS112            | PAVON F 76                            | SWRS133            | YANAC/3PRL/SARA//TSI/VEE#5/4    |
| SWRS113            | PIRSABAK 85                           |                    | /CROC_1/AE.SQUARROSA            |
|                    |                                       |                    | (224)//OPATA                    |
| SWRS114            | POTAM S 70                            | SWRS134            | FGO/USA2111/ /AE.SQUARROSA (    |
| SWRS115            | SAFED LERMA                           |                    | 658)/3/PRL/SARA//TSI/VEE#5/4/AT |
|                    |                                       |                    | TILA                            |
| SWRS135            | CROC_1/AE.SQUARROSA                   | SWRS166            | OAX93.10.1                      |
|                    | (205)/                                | SWRS167            | OAX93.10.1                      |
|                    | /KAUZ/3/DHARWAR                       |                    |                                 |
| CWDC126            | DRY/4/WBLL1                           | CWDC160            | CANHOL                          |
| SWRS136<br>SWRS137 | AUS 4930.7/2*PASTOR                   | SWRS168<br>SWRS169 | CANUCK<br>AEGES                 |
| SWK515/            | CETA/AE.SQUARROS A<br>(327)//2*SUNLIN | 2 W K2 109         | AEGES                           |
| SWRS138            | T.DICOCCON                            | SWRS170            | ELVAS 61-37                     |
| 5 WK5136           | PI225332/AE.SQUARROS                  | SWRS170            | G67786                          |
|                    | (895//WBILL1/3/2*WVLL1                | 5 W K51/1          | G07780                          |
| SWRS139            | T.DICOCCONPI225332/AE.SQU             | SWRS172            | GLENLEA                         |
| 5 ((18)13)         | ARROS A                               | SWRS173            | HYBRIDE 56 VILMORIN             |
|                    | (895)//WBLL1/3/2*WBLL1                | 5 WRS175           | TITBIADE 30 VIEWORITY           |
| SWRS140            | T.DICOCCONPI225332/AE.SQU             | SWRS153            | BETTY/3/CHEN/AE.SQ//2*OPATA     |
| 5 1115 1 10        | ARROSA                                | SWRS154            | BETTY/3/CHEN/AE.SO//2*OPATA     |
|                    | (895)//WBLL1/3/2*WBLL1                |                    |                                 |
| SWRS141            | T.DICOCCON                            | SWRS155            | KINCI/3/CHEN/AE.SQ//2*OPATA     |
|                    | PI94625/SQUARROS A                    | SWRS156            | NL90.15.2.3                     |
|                    | (372)//3*PASTOR                       |                    |                                 |
| SWRS142            | T.DICOCCON                            | SWRS157            | NL90.15.2.57                    |
|                    | PI94625/AE.SQUARROSA                  | SWRS158            | PBL94.14.39                     |
|                    | (372)//3*PASTOR                       |                    |                                 |
| SWRS143            | T.DICOCCONPI225332/AE.SQU             | SWRS159            | QRO94.2.117                     |
|                    | ARROS A                               | SWRS160            | HGO94.9.1.3                     |
|                    | (895)//WBLL1/3/2*WBLL1                |                    |                                 |
| SWRS144            | CHEN/AE.SQ/                           | SWRS161            | HGO94.9.1.23                    |
|                    | /2*OPATA/3/TRCH                       |                    |                                 |

| SWRS145      | SCA/AE.SQUARROS A(518)/3/U       | SWRS162      | HGO94.9.1.37          |
|--------------|----------------------------------|--------------|-----------------------|
|              | RES/JU/                          |              |                       |
|              | /KAUZ/4/USES/JUN/KAUZ            | SWRS163      | HGO94.9.2.29          |
| SWRS146      | CROC_1/AE.SQUARROSA(224)/        | SWRS164      | MEX94.2.39            |
|              | 2*OPTTA/3/THB/CEP7780/SHA        |              |                       |
|              | 4/LIRA/4/FRET2                   | SWRS165      | MEX94.22.97           |
| SWRS147      | D67.2/P66.270/                   | SWRS166      | OAX93.10.1            |
|              | /AE.SQUARROSA                    |              |                       |
|              | (220)/3/PRL/SARA/TSI/VEE#5/4/    |              |                       |
|              | METSO                            | SWRS167      | OAX93.10.1            |
| SWRS148      | CETA/AE.SQUARROSA                | SWRS168      | CANUCK                |
|              | (1027)/3/URES/JUN//KAUZ/4/U      |              |                       |
|              | RES/JUN//KAUZ                    | SWRS169      | AEGES                 |
| SWRS149      | NING                             | SWRS170      | ELVAS 61-37           |
|              | CHUN20/3/MYN A/VUL/JUN/6/F       | a            | G                     |
|              | ILIN/IRENA/5C                    | SWRS171      | G67786                |
| SWRS150      | NING                             | SWRS172      | GLENLEA               |
|              | CHUN20/3/MYN A/VUL/JUN/6/F       | CIVID C 1772 | INVENTE COMMINANTA    |
| QVID 0 1 5 1 | ILIN/IRENA/5C                    | SWRS173      | HYBRIDE 56 VILMORIN   |
| SWRS151      | NORM.2-                          | SWRS174      | KIMMO                 |
|              | ABC178/3/CHEN/AE.SQ//2*OPA<br>TA | SWRS175      | KIURU                 |
| SWRS152      | NORM.2-A                         | SWRS176      | M-708/G25//NURSI 163  |
| 5 W K5132    | BC178/3/CHEN/AE.SQ//2*OPAT       | 3WK31/0      | WI-708/G23//NORST 103 |
|              | A A                              | SWRS177      | MANITAL               |
| SWRS153      | BETTY/3/CHEN/AE.SQ//2*OPA        | SVILBITT     | 1,11 11 11 11 11      |
| 5 ((18)18)   | TA                               | SWRS178      | PANE-2                |
| SWRS154      | BETTY/3/CHEN/AE.SQ//2*OPA        | 2 1112170    | 112.22                |
|              | TA                               | SWRS179      | PITIC S62             |
| SWRS155      | KINCI/3/CHEN/AE.SQ//2*OPAT       |              |                       |
|              | A                                | SWRS180      | SEVILLANO             |
| SWRS156      | NL90.15.2.3                      | SWRS181      | ANZA                  |
| SWRS157      | NL90.15.2.57                     | SWRS182      | GABO                  |
| SWRS158      | PBL94.14.39                      | SWRS183      | MARCOS JUAREZ INTA    |
| SWRS159      | QRO94.2.117                      | SWRS184      | NACOZARI F 76         |
| SWRS160      | HGO94.9.1.3                      | SWRS185      | NEELKANT              |
| SWRS161      | HGO94.9.1.23                     | SWRS186      | PASTOR                |
| SWRS162      | HGO94.9.1.37                     | SWRS187      | PBW343                |
| SWRS163      | HGO94.9.2.29                     | SWRS188      | PENJAMO 62            |
| SWRS164      | MEX94.2.39                       | SWRS189      | SIETE CERROS T66      |
| SWRS165      | MEX94.22.97                      | SWRS190      | TRIPLE DIRK           |


# Results and Discussion Phenotypic analysis

Phenotyping for anther extrusion trait was done in a sub-set of 190 diverse genotypes of SWRS material grown at University Research Farm and showed a wide range of variation. The growth habit, country of origin and AE scores of all 190 genotype are given in Table. The two methods are measure the AE in both spring (SP) and winter wheat (WP) panels were adopted, i.e., (1) direct scoring of the anthers on the field and (2) collecting and freezing the spikes and determining the AE in the laboratory. Both methods strongly correlated with one another. The laboratory-based method was preferred for the subsequent genetic

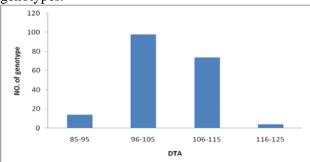
analysis, because it avoided difficulties related with the on field AE scoring and lodging of the non-dwarf accessions and because it allowed the processing of large numbers of accessions.


## Frequency distribution of AE trait

The range of AE score of the 190 wheat genotypes differ from 0.47 to 2.97 with a mean value of 1.23 and a SD of 0.36 %. The distribution of AE score for the 190 wheat genotypes was highly skewed towards higher AE, with a large number (162) of genotypes falling in higher AE group (AE score 0.40-1.60) and 24 genotype under moderate AE (score 1.61-2.00) and 4 low AE (score 2.01-3.20) genotypes.



### Frequency distribution of DTH trait,


The distribution of DTH score for the 190 wheat genotypes was highly skewed towards moderate DTH, with a large number (124) of genotypes falling in moderate DTH group (DTH score 91-100) and 36 genotype falling in highest DTH group (score 101-115) and 29 lowest DTH group (score 75-90) genotypes.



## Frequency distribution of DTA trait

The distribution of DTA score for the 190 wheat genotypes was highly skewed towards moderate

DTA group, with a large number (172) of genotypes falling in moderate DTA group (DTA score 96-115) and 4 genotype under higher DTA (116-125) and 14 under lowest DTA (score 85-95) genotypes.



## Descriptive statistics for phenotypic traits

Descriptive statistics including values of mean, range, standard deviation and coefficient of variation (CV %) for AE traits are presented in Table.

|      | Descriptive Statistics |        |        |       |           |  |  |  |
|------|------------------------|--------|--------|-------|-----------|--|--|--|
| Trai |                        | Minimu | Maximu |       | Std.      |  |  |  |
| t    | N                      | m      | m      | Mean  | Deviation |  |  |  |
|      | 19                     |        |        | 1.234 |           |  |  |  |
| AR   | 0                      | 0.47   | 2.97   | 5     | 0.36226   |  |  |  |

|       | Correlations |       |        |        |        |  |  |
|-------|--------------|-------|--------|--------|--------|--|--|
| Trait | PH           | DTH   | DTA    | DTM    | AR     |  |  |
| PH    | 1            | .144* | 0.124  | 0.132  | -0.065 |  |  |
| DTH   |              | 1     | .949** | .331** | -0.132 |  |  |
| DTA   |              |       | 1      | .276** | -0.096 |  |  |
| DTM   |              |       |        | 1      | 0.089  |  |  |
| AR    |              |       |        |        | 1      |  |  |

- \*. Correlation is significant at the 0.05 level (2-tailed).
- \*\*. Correlation is significant at the 0.01 level (2-tailed).

| ANOVA TABLE for PH |     |             |             |             |  |
|--------------------|-----|-------------|-------------|-------------|--|
| SV                 | DF  | SS          | MS          | F           |  |
| replication        | 1   | 348.6736842 | 348.6736842 | 2.498605951 |  |
| Treatment          | 189 | 25350.88421 | 134.1316625 | 0.961191467 |  |
| Error              | 189 | 26374.44    | 139.547288  |             |  |
| Total              | 379 | 52073.99532 |             |             |  |

For PH(Table \*\*), we observed that  $F_{cal.}=0.96 < F_{(189,189)}(.05)=1.26$ , so we can say that there is no significant difference between different genotype at 5% level of significance.

ISSN: 0976-7126 Malik *et al.*, 14(8-9):43-53, 2023

On the other hand,  $F_{cal.}=0.96 < F_{(189,189)}(.01)=1.39$ , so the same trend is observed for 1% level of significance.

| ANOVA TABLE for DTH |     |             |             |             |  |
|---------------------|-----|-------------|-------------|-------------|--|
| sv                  | DF  | SS          | MS          | F           |  |
| replication         | 1   | 20689.39    | 20689.39    | 198.096026  |  |
| Treatment           | 189 | 12095.32632 | 63.99643553 | 0.612750781 |  |
| Error               | 189 | 19739.39    | 104.4412141 |             |  |
| Total               | 379 |             |             |             |  |

For DTH(table), we observed that

 $F_{cal.}$ =0.61< $F_{(189,189)}$ (.05)=1.26, so we can say that there is no significant difference between different genotype at 5% level of significance.

On the other hand,  $F_{cal.}$ =0.61< $F_{(189,189)}$ (.01)=1.39, so the same trend is observed for 1% level of significance.

| ANOVA TABLE for DTA |     |             |             |             |
|---------------------|-----|-------------|-------------|-------------|
| SV                  | DF  | SS          | MS          | F           |
| replication         | 1   | 41.12       | 41.12       | 4.600133964 |
| Treatment           | 189 | 12400.05526 | 65.60875801 | 7.339996729 |
| Error               | 189 | 1689.38     | 8.938526873 |             |
| Total               | 379 |             |             |             |

For DTA (table), we observed that  $F_{cal.}=7.33>F_{(189,189)}(.05)=1.26$ , so we can say that there is significant difference between different genotype at 5% level of significance.

On the other hand,  $F_{cal.}=7.33>F_{(189,189)}(.01)=1.39$ , so we can say that there is significant difference between different genotype at 1% level of significance.

| ANOVA TABLE for DTM |     |             |             |             |  |
|---------------------|-----|-------------|-------------|-------------|--|
| SV                  | DF  | SS          | MS          | F           |  |
| replication         | 1   | 62.41       | 62.41       | 1.358064356 |  |
| Treatment           | 189 | 11347.68421 | 60.0406572  | 1.306495575 |  |
| Error               | 189 | 8685.59     | 45.95549986 |             |  |
| Total               | 379 |             |             |             |  |

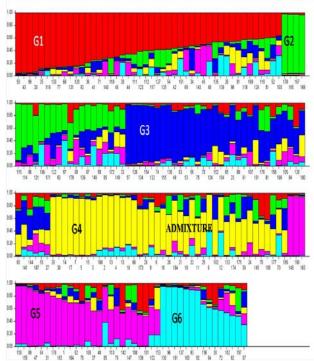
For DTM (table), we observed that  $F_{cal.}=1.30 > F_{(189,189)}(.05)=1.26$ , so we can say that there is significant difference between different genotype at 5% level of significance.

On the other hand,  $F_{cal.}=1.30 < F_{(189,189)}(.01)=1.39$ , so we can say that there is no significant difference between different genotype at 1% level of significance.

|             | ANOVA TABLE for AE |             |             |  |  |  |  |
|-------------|--------------------|-------------|-------------|--|--|--|--|
| SV          | DF                 | SS          | MS          |  |  |  |  |
| replication | 1                  | 0.07        | 0.07        |  |  |  |  |
| Treatment   | 189                | 42.94182771 | 0.227205438 |  |  |  |  |
| Error       | 189                | 15.09       | 0.079845284 |  |  |  |  |
| Total       | 379                |             |             |  |  |  |  |

For AE (table), we observed that  $F_{cal.}=2.84>F_{(189,189)}(.05)=1.26$ , so we can say that there is significant difference between different genotype at 5% level of significance.

On the other hand,  $F_{cal.}=2.84>F_{(189,189)}(.01)=1.39$ , so the same trend is observed for 1% level of significance.


Marker trait association for Anther extrusion Structure analysis of association mapping panel- LnPD values were used to determine the actual number of genetically distinct subpopulations (Evanno et al., 2005). The analysis suggested that the AM panel is structured and all the genotypes were clustered into six subpopulations i.e. G1, G2, G3, G4, G5, and G6. The six sub-population comprised 5 (G1), 7 (G2), 12 (G3), 12 (G4), 10 (G5) and 9 (G6) genotypes; the remaining 135 genotypes showed admixture.

Genetic relatedness of 190 wheat genotypes determined using 42 SNP markers through STRUCTURE analysis. Numbers on the y-axis indicate the membership coefficient. The colour of the bar indicates the six sub-populations identified through the STRUCTURE program (G1=red, G2=green, G3=blue G4=yellow G5=pink G6=sky blue). Genotypes with a similar colour belong to the same group.

# Marker trait associations identified through GLM and MLM

In association analysis based on mean values over environments, significant association (p<0.01) of different traits (AE, DTH, DTA, DTM). DTH was observed for a total of 181 DArT SNP marker loci following GLM {The R2 values for each of these 181 DArT SNP marker varied from 3.68 % to 9.43 %.} and out of 101 DArT SNP marker were mapped on 19 wheat chromosomes and the remaining 80 SNPs could not be mapped. and for a total of 92 DArT SNP marker loci following MLM. and significent marker in MLM located on 16 wheat chromosomes (The results of MTAs are summarized in Table ). Together 273 MTAs were

identified with 180 common MTAs from both the models (GLM and MLM).



AE was observed for a total of 177 DArT SNP marker loci following GLM {The R2 values for each of these 177 DArT SNP marker varied from 3.65 % to 13.01 %.} and out of 102 DArT SNP marker were mapped on 16 wheat chromosomes and the remaining 75 SNPs could not be mapped. and for a total of 142 DArT SNP marker loci following MLM. and significent marker in MLM located on 14 wheat chromosomes (The results of MTAs are summarized in Table ). Together 319 MTAs were identified with 284 common MTAs from both the models (GLM and MLM).

DTA was observed for a total of 178 DArT SNP marker loci following GLM {The R2 values for each of these 178 DArT SNP marker varied from 3.51 % to 9.55 %.} and out of 168 DArT SNP marker were mapped on 14 wheat chromosomes and the remaining 10 SNPs could not be mapped. and for a total of 118 DArT SNP marker loci following MLM. and significent marker in MLM located on 18 wheat chromosomes (The results of MTAs are summarized in Table ). Together 296 MTAs were identified with 284 common MTAs from both the models (GLM and MLM).

#### Conclusion

The important MTAs involving main effect and epistatic QTLs identified during the present study

may be further validated using post-GWAS or joint linkage and association mapping (JLAM; Gupta et al., 2019; Gahlaut et al., 2019) and used for MAS in wheat breeding programmes targeted towards yield improvement. The correlation study revealed that plot yield had strong positive association with days to heading, days to anthesis, days to maturity & anther extrusion. The association studies, indicated that grain yield of wheat can be improved by selecting genotypes having higher performances for the above characters. Development of crop cultivars that are tolerant to abiotic stress has been an active area of research, but so far has met with only a limited success in field level. Anthers extrusion is most imported quantitative trait. Wheat AE (Anther extrusion) phenotypes were classified three classes (low, moderate and high anther extrusion).

## **Acknowledgement**

We would like to acknowledge the Department of Genetics & Plant Breeding (C.C.S. University, Meerut) for providing facilities to conduct the experiment. I am grateful also thankful to Prof. P.K. Gupta & Prof. H.S. Balyan (emeritus professors at CCSU, Meerut) for their constant support.

#### References

- 1. Alexander, D.H., Novembre, J. and Lange, K., 2009. Fast model-based estimation of ancestry in unrelated individuals. *Genome research*, 19(9), pp.1655-1664.
- 2. Bennett, M.D. and Leitch, I.J., 2005. Genome size evolution in plants. In *The evolution of the genome* (pp. 89-162). Academic Press.
- 3. Boeven, P.H., Longin, C.F.H., Leiser, W.L., Kollers, S., Ebmeyer, E. and Würschum, T., 2016. Genetic architecture of male floral traits required for hybrid wheat breeding. *Theoretical and applied genetics*, 129(12), pp.2343-2357.
- DeWan, A., Liu, M., Hartman, S., Zhang, S.S.M., Liu, D.T., Zhao, C., Tam, P.O., Chan, W.M., Lam, D.S., Snyder, M. and Barnstable, C., 2006. HTRA1 promoter polymorphism in wet agerelated macular degeneration. *Science*, 314(5801), pp.989-992.
- 5. Evanno, G., Regnaut, S. and Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Molecular ecology*, 14(8), pp.2611-2620.
- 6. Gahlaut, V., Jaiswal, V., Singh, S., Balvan, H.S. and Gupta, P.K., 2019. Multi-locus genome wide association mapping for yield and its contributing

- traits in hexaploid wheat under different water regimes. Scientific reports, 9(1), p.19486.
- Gupta, P.K., Kulwal, P.L. and Jaiswal, V., 2019. Association mapping in plants in the post-GWAS genomics era. Advances in genetics, 104, pp.75-154.
- 8. Jing, H.C., Kornyukhin, D., Kanyuka, K., Orford, S., Zlatska, A., Mitrofanova, O.P., Koebner, R. and Hammond-Kosack, K., 2007. Identification of variation in adaptively important traits and genome-wide analysis of trait—marker associations in *Triticum monococcum*. Journal of experimental botany, 58(13), pp.3749-3764.
- Kang, H.M., Zaitlen, N.A., Wade, C.M., Kirby, A., Heckerman, D., Daly, M.J. and Eskin, E., 2008. Efficient control of population structure in model organism association mapping. *Genetics*, 178(3), pp.1709-1723.
- Karlsson, E.K., Baranowska, I., Wade, C.M., Hillbertz, N.H.S., Zodv, M.C., Anderson, N., Biagi, T.M., Patterson, N., Pielberg, G.R., Kulbokas III, E.J. and Comstock, K.E., 2007. Efficient mapping of mendelian traits in dogs through genome-wide association. *Nature* genetics, 39(11), p.1321.
- 11. KIHARA, H., 1944. Discovery of DD analyser, one of the ancestors of T."re *Agric Hortic* (*Tokyo*), *19*, pp.889-890.
- Kulwal, P., Ishikawa, G., Benscher, D., Feng, Z., Yu, L.X., Jadhav, A., Mehetre, S. and Sorrells, M.E., 2012. Association mapping for pre-harvest sprouting resistance in white winter wheat. *Theoretical and Applied Genetics*, 125(4), pp.793-805.

- 13. Langer, S.M., Longin, C.F.H., Wurschum, T., 2014. Flowering time control in European winter wheat. *Front Plant Sci*, 5,pp.1–12.
- Mir, R.R., Kumar, N., Jaiswal, V., Girdharwal, N., Prasad, M., Balyan, H.S. and Gupta, P.K., 2012. Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. *Molecular Breeding*, 29(4), pp.963-972.
- 15. Muqaddasi, Q.H., Brassac, J., Börner, A., Pillen, K. and Röder, M.S., 2017. Genetic architecture of anther extrusion in spring and winter wheat. *Frontiers in plant science*, 8, p.754.
- 16. Muqaddasi, Q.H., Lohwasser, U., Nagel, M., Börner, A., Pillen, K. and Röder, M.S., 2016. Genome-wide association mapping of anther extrusion in hexaploid spring wheat. *PloS one*, 11(5), p.e0155494.
- 17. Peng, J.H., Bai, Y., Halev, S.D. and Lapitan, N.L.V., 2009. Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to the Russian wheat aphid. Genetica, 135(1), p.95.
- Tadesse, W., Ogbonnaya, F.C., Jighly, A., Sanchez-Garcia, M., Sohail, Q., Rajaram, S. and Baum, M., 2015. Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes. *PloS one*, 10(10), p.e0141339.
- 19. Yu, J. and Buckler, E.S., 2006. Genetic association mapping and genome organization of maize. *Current opinion in biotechnology*, *17*(2), pp.155-160.

### Cite this article as:

Malik P., Tiwari R.K., Ali Mohd. N., Kumar V. and Singh S. (2023). Genome-wide Association Mapping (GWAS) for Anther Extrusion in Bread Wheat (*Triticum aestivum* L.) Using DArT-SNP Markers. *Int. J. of Pharm. & Life Sci.*, 14(8-9): 43-53.

Source of Support: Nil

Conflict of Interest: Not declared

For reprints contact: ijplsjournal@gmail.com