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Abstract 
The discovery and optimization of polymeric materials have traditionally 

relied on experiment-driven, trial-and-error workflows that are time-

consuming and resource intensive. Artificial intelligence (AI) — 

particularly machine learning (ML), graph neural networks (GNNs), 

generative models, and active learning — is transforming polymer 

science by enabling rapid property prediction, inverse design, and 

closed-loop experimental optimization. This review surveys recent 

advances (2018–2025) in data resources, polymer representations, 

predictive and generative AI models, optimization strategies (including 

Bayesian optimization and active learning), and automated/self-driving 

laboratories. We highlight landmark platforms (Polymer Genome, Open 

Macromolecular Genome), methodological progress (multitask GNNs, 

chemical language models such as polyBERT, and benchmarks for deep 

generative models), and successful demonstrations of AI-assisted 

polymer discovery in energy, electronics, healthcare, and sustainable 

plastics.  

Key challenges remain: scarcity and heterogeneity of polymer data, difficulty representing polymer 

ensembles and architectures, synthetic feasibility of generated candidates, model interpretability, and 

integration with experimental workflows. We discuss strategies to address these issues — standardized 

databases and representations, self-supervised learning, synthesis-aware generative models, and tighter 

AI–robotics integration — and outline opportunities where AI can accelerate green polymer chemistry, 

circular-economy polymers, and application-directed multi-property optimization. The review concludes 

by advocating for community efforts in data curation, open benchmarks, and interdisciplinary training to 

realize AI’s promise for fast, cost-effective polymer innovation. 
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Introduction 
Polymers underpin an enormous fraction of 

modern technologies — from packaging and 

structural materials to biomedical devices and 

organic electronics. Their property space is vast 

because small changes in monomer chemistry, 

sequence, tacticity, and processing produce large 

changes in performance. Traditional discovery 

cycles (synthesis → characterization → iterative 
design) are slow and expensive. Over the past 

decade AI has emerged as a powerful complement 

to experiment and simulation, enabling (i) rapid  

 

property prediction from structure, (ii) inverse 

design to identify candidate chemistries that meet 

target properties, and (iii) closed-loop 

optimization when paired with automated 

synthesis and characterization platforms.  
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Landmark initiatives — notably the Polymer 

Genome platform — established the feasibility of 

ML-driven property prediction for polymers and 

motivated subsequent methodological innovations 

(e.g., graph neural networks and chemical 

language models) that scale polymer informatics 

to much larger candidate spaces. [1] 

 
Fig. 1: Block diagram of AI driven Novel Polymer 

 

Data resources and curation 

AI requires curated data. For polymers, important 

sources include PoLyInfo (NIMS), Polymer 

Genome datasets, the Open Macromolecular 

Genome (OMG), CAMPUS and commercial 

datasheets, and public repositories such as 

PubChem-derived polymer entries. PoLyInfo 

aggregates >0.5M polymer data points with 

measurement metadata; Polymer Genome supplies 

curated property labels and models for many 

thermomechanical properties; OMG focuses on 

synthetic accessibility and reaction-compatibility 

for generated chemistries. Data challenges are 

numerous: disparate measurement conditions, 

inconsistent naming/representation, and limited 

coverage of copolymers and complex 

architectures. Recent reviews and database efforts 

emphasize machine-readable standards and the 

need for richer metadata (processing, degree of 

polymerization, measurement conditions) to 

improve model transferability. [2-3] 

 

Representations and descriptors for polymers 

A core difficulty in polymer informatics is 

representing polymers compactly yet expressively  

 

for ML. Early approaches used handcrafted 

features derived from monomer fingerprints, 

constitutional descriptors, and thermodynamic 

approximations (the Polymer Genome 

fingerprint). More recent representations learn 

features directly using graph neural networks 

(GNNs) and sequence/transformer-based 

encodings (chemical language models). Graph-

based representations that capture monomer 

graphs, connection topology, and periodicity have 

shown improved accuracy and enabled multitask 

learning across many properties. Self-supervised 

pretraining (e.g., polyBERT-style models) further 

improves data efficiency and enables transfer 

learning across tasks. Still, representing 

copolymer sequence distributions, polydispersity, 

and chain architecture remains an active research 

area. [4] 

 

Predictive ML models: property forecasting 

and screening 

Predictive models (regression/classification) 

remain the first AI tool in polymer discovery. 

Approaches include random forests, gradient-

boosted trees, fully connected neural networks, 
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and GNNs. Multitask learning — training one 

model to predict many properties — leverages 

shared structure–property correlations and reduces 

required labeled data. GNN-based models have 

been shown to speed feature extraction and 

screening by 1–2 orders of magnitude while 

maintaining or improving accuracy relative to 

handcrafted descriptors, enabling virtual screening 

of millions of candidates. These surrogate models 

are widely used as fast filters upstream of 

synthesis planning.  

 

Generative models and inverse design 

Inverse design seeks to produce polymer 

chemistries that match desired properties. 

Generative models used include Variational 

Autoencoders (VAEs), Generative Adversarial 

Networks (GANs), recurrent neural networks, 

reinforcement learning (RL) strategies, and graph-

based generative models. Recent efforts 

emphasize synthesis awareness (ensuring 

generated chemistries are compatible with known 

polymerization reactions and available monomers) 

— the Open Macromolecular Genome (OMG) is 

an explicit example that constrains generation to 

synthetically accessible chemistries. 

Benchmarking studies of deep generative models 

for polymers have begun to evaluate validity, 

novelty, diversity, and property-guided 

optimization performance, highlighting tradeoffs 

between exploration and synthetic realism. [5-6] 

 

Optimization, active learning, and Bayesian 

methods 

When experimental throughput is limited, 

optimization strategies such as Bayesian 

optimization (BO) and active learning (AL) are 

extremely valuable. BO has been applied to tune 

polymerization conditions and compositions for 

target mechanical or thermal outcomes, often with 

acquisition functions tailored to multi-objective 

goals. Batch and scalable BO variants permit 

efficient exploration of high-dimensional polymer 

formulation spaces. Coupling BO with predictive 

surrogates and uncertainty quantification 

accelerates discovery while minimizing costly 

experiments.  

 

 

 

Integration with automation: self-driving 

laboratories 

The ultimate acceleration arises when AI models 

are integrated with automated synthesis and 

characterization — so-called self-driving 

laboratories (SDLs). SDLs close the loop: the 

model proposes candidates, robotics synthesize 

them, instruments measure properties, and the 

data are fed back to update the model. Recent 

high-impact demonstrations in materials science 

show autonomous laboratories optimizing 

inorganic and soft materials properties orders of 

magnitude faster than manual workflows; similar 

platforms have been developed specifically for 

polymers (e.g., Polybot and other autonomous 

polymer labs), enabling rapid optimization of 

electronic and soft-material properties. SDLs also 

demand careful experimental design, standardized 

protocols, and tight error-handling to ensure 

robustness. [7-8] 

 

Selected application areas and success stories 

Energy and electronics — AI has accelerated 

discovery of high-performance polymer 

dielectrics, polymer electrolytes for batteries, and 

conjugated polymers for organic electronics 

through combined modeling and high-throughput 

screening.  

Sustainable and biodegradable polymers — 

Active learning and BO have guided formulation 

of biodegradable polyesters with improved 

degradation vs. mechanical property tradeoffs.  

Biomedical polymers — AI-guided design of 

hydrogels and drug-delivery polymers helps tailor 

swelling, release kinetics, and biocompatibility 

while reducing animal testing. (Emerging; several 

proof-of-concept demonstrations exist.) 

Catalyst and process optimization — AI has 

assisted in selecting polymerization catalysts 

(stereoselective ROP) and optimizing process 

conditions for desired tacticity and molecular 

weight distribution.  [9] 

 

Challenges and limitations 

Data quality and quantity: Polymer datasets are 

noisy, sparse, and heterogeneous. Measurement 

conditions (e.g., molecular weight, processing 

history) are often missing or inconsistent, limiting 

generalizability.  
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Representation of polymer ensembles: Unlike 

small molecules, polymers are distributions with 

polydispersity and sequence variability. 

Representations that fully capture these features 

are still maturing.  

Synthetic feasibility: Generative models can 

produce chemically valid but synthetically 

infeasible polymers. Constraining generation to 

reaction-compatible chemistries or embedding 

synthesis planning is necessary.  

Interpretability and trust: Many deep models 

are black boxes; explainable AI and physically 

informed ML are required for adoption by 

chemists and engineers.  

Integration costs: Building and operating SDLs 

is nontrivial, requiring robotics, instrumentation, 

and software orchestration. There are also safety 

and reproducibility considerations. [10-11] 

 

Paths forward and recommendations 

Standards and community datasets: 

Community efforts should standardize polymer 

metadata, measurement reporting, and open 

benchmark datasets to enable fair comparisons. 

PoLyInfo, Polymer Genome, and OMG are 

positive examples.  

Representation research: Continue developing 

representations that capture sequence, 

architecture, and ensemble effects (periodic 

graphs, augmented GNNs, and transformer 

encodings).  

Synthesis-aware generative models: Embed 

reaction templates, monomer availability, and 

polymerization mechanism constraints in 

generative workflows to prioritize accessible 

candidates.  

Self-supervised and transfer learning: Use large 

unlabeled polymer corpora for pretraining 

(polyBERT, self-supervised GNNs) to improve 

data efficiency when labeled data are scarce. 

Interdisciplinary training & open tooling: 

Broaden training across polymer chemistry, AI, 

and automation; produce open toolchains and 

reproducible workflows (model code, datasets, 

and SDL software). [12-14] 
 

Conclusion 
AI has matured from speculative promise to a 

practical accelerator of polymer discovery. 

Advances in database construction, polymer-

specific representations, multitask GNNs, 

chemical language models, synthesis-aware 

generative frameworks, and autonomous 

laboratories together enable faster, cheaper, and 

more directed polymer innovation. To fully 

realize this promise, the community must tackle 

data standardization, representation of polymer 

complexity, synthetic realism, explainability, and 

practical integration into experimental workflows. 

The coming decade should witness broader 

adoption of AI-guided pipelines that deliver 

application-ready polymers for energy, healthcare, 

electronics, and a circular plastics economy. 
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