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Article info Abstract
The discovery and optimization of polymeric materials have traditionally
Received: 18/10/2025 relied on experiment-driven, trial-and-error workflows that are time-
consuming and resource intensive. Artificial intelligence (Al) —
Revised:20/11/2025 particularly machine learning (ML), graph neural networks (GNNs),
generative models, and active learning — is transforming polymer
Accepted: 19/12/2025 science by enabling rapid property prediction, inverse design, and
closed-loop experimental optimization. This review surveys recent
© IJPLS advances (2018-2025) in data resources, polymer representations,

predictive and generative Al models, optimization strategies (including
Bayesian optimization and active learning), and automated/self-driving
laboratories. We highlight landmark platforms (Polymer Genome, Open
Macromolecular Genome), methodological progress (multitask GNNs,
chemical language models such as polyBERT, and benchmarks for deep
generative models), and successful demonstrations of Al-assisted
polymer discovery in energy, electronics, healthcare, and sustainable
plastics.

Key challenges remain: scarcity and heterogeneity of polymer data, difficulty representing polymer
ensembles and architectures, synthetic feasibility of generated candidates, model interpretability, and
integration with experimental workflows. We discuss strategies to address these issues — standardized
databases and representations, self-supervised learning, synthesis-aware generative models, and tighter
Al-robotics integration — and outline opportunities where Al can accelerate green polymer chemistry,
circular-economy polymers, and application-directed multi-property optimization. The review concludes
by advocating for community efforts in data curation, open benchmarks, and interdisciplinary training to
realize AI’s promise for fast, cost-effective polymer innovation.
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Introduction _y i

. . property prediction from structure, (ii) inverse
Polymers underpin an enormous fraction of . . . ) .

. . design to identify candidate chemistries that meet
modern technologies — from packaging and

target  properties, and (iii)) closed-loop
optimization when paired with automated
synthesis and characterization platforms.

structural materials to biomedical devices and
organic electronics. Their property space is vast
because small changes in monomer chemistry,
sequence, tacticity, and processing produce large . .
changes in performance. Traditional discovery Corresponding Autho.r )
cycles (synthesis — characterization — iterative E.mail: prernachaturvedil2@gmail.com
design) are slow and expensive. Over the past

decade Al has emerged as a powerful complement

to experiment and simulation, enabling (i) rapid
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Landmark initiatives — notably the Polymer
Genome platform — established the feasibility of
ML-driven property prediction for polymers and
motivated subsequent methodological innovations

Polymer Candidates

(e.g., graph neural networks and chemical
language models) that scale polymer informatics
to much larger candidate spaces. [1]

Polymer Databases \
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Fig. 1: Block diagram of AI driven Novel Polymer

Data resources and curation

Al requires curated data. For polymers, important
sources include PoLyInfo (NIMS), Polymer
Genome datasets, the Open Macromolecular
Genome (OMG), CAMPUS and commercial
datasheets, and public repositories such as
PubChem-derived polymer entries. PoLylnfo
aggregates >0.5M polymer data points with
measurement metadata; Polymer Genome supplies
curated property labels and models for many
thermomechanical properties; OMG focuses on
synthetic accessibility and reaction-compatibility
for generated chemistries. Data challenges are
numerous: disparate measurement conditions,
inconsistent naming/representation, and limited
coverage of copolymers and complex
architectures. Recent reviews and database efforts
emphasize machine-readable standards and the
need for richer metadata (processing, degree of
polymerization, measurement conditions) to
improve model transferability. [2-3]

Representations and descriptors for polymers
A core difficulty in polymer informatics is
representing polymers compactly yet expressively

for ML. Early approaches used handcrafted
features derived from monomer fingerprints,
constitutional descriptors, and thermodynamic
approximations (the Polymer Genome
fingerprint). More recent representations learn
features directly using graph neural networks
(GNNs) and sequence/transformer-based
encodings (chemical language models). Graph-
based representations that capture monomer
graphs, connection topology, and periodicity have
shown improved accuracy and enabled multitask
learning across many properties. Self-supervised
pretraining (e.g., polyBERT-style models) further
improves data efficiency and enables transfer
learning  across  tasks.  Still, representing
copolymer sequence distributions, polydispersity,
and chain architecture remains an active research
area. [4]

Predictive ML models: property forecasting
and screening

Predictive  models  (regression/classification)
remain the first Al tool in polymer discovery.
Approaches include random forests, gradient-
boosted trees, fully connected neural networks,
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and GNNs. Multitask learning — training one
model to predict many properties — leverages
shared structure—property correlations and reduces
required labeled data. GNN-based models have
been shown to speed feature extraction and
screening by 1-2 orders of magnitude while
maintaining or improving accuracy relative to
handcrafted descriptors, enabling virtual screening
of millions of candidates. These surrogate models
are widely used as fast filters upstream of
synthesis planning.

Generative models and inverse design

Inverse design seeks to produce polymer
chemistries that match desired properties.
Generative models used include Variational
Autoencoders (VAEs), Generative Adversarial
Networks (GANSs), recurrent neural networks,
reinforcement learning (RL) strategies, and graph-
based generative models. Recent efforts
emphasize  synthesis  awareness  (ensuring
generated chemistries are compatible with known
polymerization reactions and available monomers)
— the Open Macromolecular Genome (OMG) is
an explicit example that constrains generation to
synthetically accessible chemistries.
Benchmarking studies of deep generative models
for polymers have begun to evaluate validity,
novelty, diversity, = and  property-guided
optimization performance, highlighting tradeoffs
between exploration and synthetic realism. [5-6]

Optimization, active learning, and Bayesian
methods

When experimental throughput is limited,
optimization strategies such as Bayesian
optimization (BO) and active learning (AL) are
extremely valuable. BO has been applied to tune
polymerization conditions and compositions for
target mechanical or thermal outcomes, often with
acquisition functions tailored to multi-objective
goals. Batch and scalable BO variants permit
efficient exploration of high-dimensional polymer
formulation spaces. Coupling BO with predictive
surrogates and  uncertainty  quantification
accelerates discovery while minimizing costly
experiments.

Integration with automation:
laboratories

The ultimate acceleration arises when Al models
are integrated with automated synthesis and
characterization = —  so-called  self-driving
laboratories (SDLs). SDLs close the loop: the
model proposes candidates, robotics synthesize
them, instruments measure properties, and the
data are fed back to update the model. Recent
high-impact demonstrations in materials science
show autonomous laboratories optimizing
inorganic and soft materials properties orders of
magnitude faster than manual workflows; similar
platforms have been developed specifically for
polymers (e.g., Polybot and other autonomous
polymer labs), enabling rapid optimization of
electronic and soft-material properties. SDLs also
demand careful experimental design, standardized
protocols, and tight error-handling to ensure
robustness. [7-8]

self-driving

Selected application areas and success stories
Energy and electronics — Al has accelerated
discovery  of  high-performance  polymer
dielectrics, polymer electrolytes for batteries, and
conjugated polymers for organic -electronics
through combined modeling and high-throughput
screening.

Sustainable and biodegradable polymers —
Active learning and BO have guided formulation
of Dbiodegradable polyesters with improved
degradation vs. mechanical property tradeoffs.
Biomedical polymers — Al-guided design of
hydrogels and drug-delivery polymers helps tailor
swelling, release kinetics, and biocompatibility
while reducing animal testing. (Emerging; several
proof-of-concept demonstrations exist.)

Catalyst and process optimization — Al has
assisted in selecting polymerization catalysts
(stereoselective  ROP) and optimizing process
conditions for desired tacticity and molecular
weight distribution. [9]

Challenges and limitations

Data quality and quantity: Polymer datasets are
noisy, sparse, and heterogeneous. Measurement
conditions (e.g., molecular weight, processing
history) are often missing or inconsistent, limiting
generalizability.
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Representation of polymer ensembles: Unlike
small molecules, polymers are distributions with
polydispersity = and  sequence  variability.
Representations that fully capture these features
are still maturing.

Synthetic feasibility: Generative models can
produce chemically valid but synthetically
infeasible polymers. Constraining generation to
reaction-compatible chemistries or embedding
synthesis planning is necessary.

Interpretability and trust: Many deep models
are black boxes; explainable Al and physically
informed ML are required for adoption by
chemists and engineers.

Integration costs: Building and operating SDLs
is nontrivial, requiring robotics, instrumentation,
and software orchestration. There are also safety
and reproducibility considerations. [10-11]

Paths forward and recommendations
Standards and community datasets:
Community efforts should standardize polymer
metadata, measurement reporting, and open
benchmark datasets to enable fair comparisons.
PoLyInfo, Polymer Genome, and OMG are
positive examples.

Representation research: Continue developing
representations that capture sequence,
architecture, and ensemble effects (periodic
graphs, augmented GNNs, and transformer
encodings).

Synthesis-aware generative models: Embed
reaction templates, monomer availability, and
polymerization = mechanism  constraints  in
generative workflows to prioritize accessible
candidates.

Self-supervised and transfer learning: Use large
unlabeled polymer corpora for pretraining
(polyBERT, self-supervised GNNs) to improve
data efficiency when labeled data are scarce.
Interdisciplinary training & open tooling:
Broaden training across polymer chemistry, Al,
and automation; produce open toolchains and
reproducible workflows (model code, datasets,
and SDL software). [12-14]

Conclusion

Al has matured from speculative promise to a
practical accelerator of polymer discovery.
Advances in database construction, polymer-
specific  representations, multitask =~ GNNs,

chemical language models, synthesis-aware
generative  frameworks, and  autonomous
laboratories together enable faster, cheaper, and
more directed polymer innovation. To fully
realize this promise, the community must tackle
data standardization, representation of polymer
complexity, synthetic realism, explainability, and
practical integration into experimental workflows.
The coming decade should witness broader
adoption of Al-guided pipelines that deliver
application-ready polymers for energy, healthcare,
electronics, and a circular plastics economy.
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