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Abstract

Quantitative structure—activity relationship (QSAR) modeling remains a
cornerstone of ligand-based drug design. Recent methodological
innovations — including deep learning, graph neural networks, multi-
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Introduction

Breast cancer remains a leading cause of cancer
mortality among women globally and exhibits
substantial molecular heterogeneity (You et al.,

including graph neural networks (GNNs) and
transformer-based molecular encoders — have
transformed QSAR capabilities, enabling more
accurate and generalizable predictions across

2022). leference.s. across subtypgs — cstrogen larger and noisier datasets (Soares et al., 2022; Li,
receptor (ER)-positive, HER2-positive, and triple- 2025). At the same time, integration with
negatl.ve breast cancer (.TNB.C) L de.m.a nd structure-based methods (docking, molecular
selective therapeutic strategies tailored to distinct dynamics), ADMET modelling, and multi-

molecular drivers. Ligand-based in silico methods

objective optimization has made virtual screenin
such as QSAR can accelerate early-stage ) P £

pipelines more realistic and directly useful for

discovery by predicting biological activity from
chemical structure, prioritizing molecules for
synthesis and testing, and reducing cost and time
compared with purely experimental screening
(Soares et al., 2022).

QSAR traditionally relied on handcrafted
molecular descriptors and classical statistical
models (e.g., multiple linear regression, PLS).
Over the last decade, machine learning (ML) and,
more recently, deep learning (DL) methods —

anti-breast cancer drug development (El Rhabori
et al., 2025; Zarougui et al., 2024).

This review focuses on these innovations and how
they can be applied to accelerate development of
selective anti-breast cancer molecules.
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Targets and biological context in anti-breast
cancer QSAR

Effective QSAR for breast cancer requires clear
definition of targets and biological endpoints.
QSAR models have been applied at different
levels:

Single-target  biochemical assays: e.g.,
aromatase, estrogen receptor o (ERa), HER2
kinase domain, CDKs, tubulin. These models
predict binding or inhibition against purified
protein/assay endpoints and are useful for lead
optimization (Bhatia et al., 2025).

Cellular endpoints: e.g., cytotoxicity (MCF-7,
MDA-MB-231), proliferation IC50, apoptosis
markers. These incorporate cellular context but

are influenced by permeability, efflux, and
metabolism (Karampuri et al., 2024).
Phenotypic endpoints: invasion, migration,

colony formation — more distal but biologically
relevant.

Multi-assay/multi-target  models: combine
heterogeneous endpoints (binding across several
proteins or cell-line panels) to predict
polypharmacology or tumor-subtype specificity
(Karampuri et al., 2024; PTML approaches).
Choosing the correct endpoint and dataset is
crucial because models trained on biochemical
binding do not always translate to cellular efficacy
(El Rhabori et al., 2025).

Datasets and curation

Large, curated datasets fuel modern QSAR. Public
resources include ChEMBL (bioactivity and
assay metadata), PubChem BioAssay,
GDSC/CCLE for cell-line sensitivity data, and
specialized literature datasets focused on breast
cancer targets (ChEMBL; Karampuri et al., 2024).
Recent reviews emphasize the importance of:
Assay harmonization (standardizing units, assay
formats).

Activity threshold selection (e.g., pIC50 cutoffs)
or regression targets.

Removing duplicates and inconsistent records.
Annotating assay context (assay type, cell line,
species).

Large aggregated datasets enable ML/DL training
but introduce noise; careful curation and
metadata-aware modeling (e.g., multi-task or
PTML approaches) help mitigate this (Soares et
al., 2022; PTML literature).

Molecular representations and descriptors
Representation is central to QSAR performance.
Classical descriptors

1D/2D descriptors: molecular weight, logP,
topological polar surface area (TPSA), counts of
specific atom types, rotatable bonds.
Fingerprinting: ECFP (circular/Morgan
fingerprints), MACCS keys — widely used for
similarity, clustering, and as inputs for ML
(Soares et al., 2022).

3D descriptors and 3D-QSAR

3D-QSAR (CoMFA, CoMSIA) uses aligned 3D
conformations to model steric/electrostatic fields
affecting binding. For breast cancer targets where
ligand conformations and binding modes are well
defined (e.g., ER), 3D-QSAR can yield
interpretable  SAR maps guiding optimization
(Kim et al., 2022; Zarougui et al., 2024).

Learned representations

Deep learning enables end-to-end learning from
raw representations:

Graph neural networks (GNNs) encode
molecular graphs (atoms/nodes; bonds/edges) and
learn features via message passing.
Sequence/SMILES models (RNN:S,
Transformers) learn patterns in SMILES strings.
Pretrained molecular encoders and transfer
learning (pretraining on large chemical corpora
and fine-tuning for breast cancer endpoints)
improve performance in low-data regimes (Soares
et al., 2022).

These learned representations often outperform
handcrafted descriptors for complex, non-linear
activity relationships.

Machine learning and deep learning
architectures

Classical ML methods

Random forests, support vector machines,

gradient boosting (XGBoost/LightGBM) have
strong performance, particularly with engineered
features and moderate-sized datasets.

Deep learning

Advances include:

GNNs (GCN, GAT, MPNN) for structure aware
learning.

Graph Transformers and
architectures.

Multi-task neural networks predicting multiple
endpoints  simultaneously  (beneficial ~when

attention-based

International Journal of Pharmacy & Life Sciences

Volume 16 Issue 11: Nov. 2025



Review Article
CODEN (USA): IJPLCP

ISSN: 0976-7126
Chaturvedi & Gupta, 16(11):11-16, 2025

endpoints are related, e.g., activity across cell
lines).

Hybrid models combining fingerprints with GNN
embeddings or docking scores.

Soares et al. (2022) and other recent reviews
document superior performance of deep learning
when properly regularized and when sufficient
data or transfer learning is available.

Multi-task, multi-target, and context-aware
QSAR

Cancer is complex; compounds frequently act on
multiple targets and their efficacy varies across
cell lines and contexts. Innovations include:
Multi-task learning (MTL): trains a shared
model to predict several related endpoints; helps
transfer information between assays and reduces
overfitting (Karampuri et al., 2024).
Perturbation-aware models (PTML):
incorporate assay metadata as features to model
cross-assay heterogeneity (PTML literature).
Contextual modeling: cell-line or omics features
are combined with compound features to predict
cell sensitivity (integrating genomic features of
tumor models) (Karampuri et al., 2024; You et al.,

2022).
These strategies are especially wuseful for
predicting  subtype-selective  activity  (e.g.,

compounds preferentially active in ER+ vs TNBC
cell lines).

Integrating QSAR  with
methods, docking and MD
Combining ligand-based QSAR with docking,
molecular dynamics (MD), and physics-based
scoring improves confidence and can suggest
binding modes for molecules prioritized by QSAR
(El Rhabori et al., 2025; Zarougui et al., 2024).
Typical integrated workflow:
Large chemical library
QSAR/GNN models.

Top candidates docked to target structures;
docking scores and interaction fingerprints
appended as additional descriptors.

MD used to validate docking poses and compute
binding free energy estimates for top candidates.
ADMET filters applied before synthesis.

This multi-layered approach leverages strengths
of each method: QSAR’s speed and patterns

structure-based

screened by fast

across known actives,
mechanistic insight.

and docking/MD’s

ADMET and toxicity prediction in anti-breast
cancer pipelines

Predicting ADME/Tox early reduces attrition.
Modern QSAR integrates ADMET predictions
(logP, solubility, CYP inhibition, hERG liability,
DILI) as part of multi-objective optimization
(Mostafa et al.,, 2024). Deep learning models
trained on large toxicology datasets provide a
second line of filters to remove compounds with
high predicted liabilities.

Validation,  applicability
uncertainty quantification
Robust validation is essential to avoid misleading
claims:

Cross-validation strategies: scaffold split (more
realistic) vs random split; scaffold split
approximates prospective generalization (Soares
et al., 2022).

External test sets: gold standard.

Applicability domain (AD): define chemical
space where predictions are reliable (distance-
based, similarity thresholds).

Uncertainty estimation: ensembles, Bayesian
neural networks, Monte Carlo dropout help
quantify model confidence — invaluable for
prioritizing compounds for experimental follow-
up.

Recent reviews stress scaffold-aware splits and
explicit AD reporting as necessary for credible
QSAR (Soares et al., 2022; Li, 2025).

domain, and

Interpretability and explainability
Adoption in drug discovery benefits
interpretable models:

Feature importance (SHAP, permutation) for
fingerprint/descriptor models.

Attention maps and substructure attribution
for GNNs/transformers.

3D-QSAR contour maps
steric/electrostatic regions to modify.
Explainability helps chemists design structural
edits to optimize potency/selectivity.

from

showing
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Representative case studies (selected)
Aromatase and ERa inhibitors

Aromatase and ERa are classic targets for ER+
breast cancer. QSAR and 3D-QSAR studies
(CoMFA/CoMSIA) plus docking have guided
optimization of flavonoid derivatives and steroidal
scaffolds (Awasthi et al., 2015; Bhatia et al.,
2025).

Tubulin inhibitors and mitotic targets

Recent QSAR + docking studies identified novel
tubulin inhibitors with activity in breast cancer
models (Moussaoui et al., 2024). Combined 3D-
QSAR and MD elucidated binding features.
Cell-line specific QSAR

Karampuri et al. (2024) developed combinational
QSAR models that integrate multiple assays and
cell-line metadata to predict activity across breast
cancer cell lines. Multi-task approaches improved

generalization.
Deep learning in virtual screening
Several recent studies show GNNs and

transformer models trained or pretrained on large
chemical libraries can prioritize actives against
breast cancer targets and, when combined with
docking/ADMET filters, accelerate hit discovery
(Soares et al., 2022; practical cheminformatics
analyses).

Practical workflows and software/tools
Open-source and commercial tools
modern QSAR pipelines:

Descriptor calculators: RDKit, PaDEL.
Fingerprints: RDKit (Morgan), CDK.
ML frameworks: scikit-learn, XGBoost, PyTorch,
TensorFlow, DGL/PyG for GNNS.

Databases: ChEMBL, PubChem, GDSC/CCLE.
Docking: AutoDock Vina, Glide (commercial).
3D-QSAR: SYBYL/Forge (commercial), open
approaches with RDKit + custom grids.

ChEMBL and other curated repositories are
primary sources for activity data (ChEMBL).

support

Challenges and limitations

While innovations improved QSAR, challenges
remain:

Data quality and assay heterogeneity — noisy
labels, inconsistent endpoints hamper learning.

Generalization — even advanced models can fail
on novel scaffolds without transfer learning or
domain adaptation (Variational blog discussion).
Explainability vs performance tradeoffs.
Integration with biological heterogeneity —
tumor microenvironment, heterogeneity across
patients not captured by cell lines.

Regulatory acceptance and reproducibility —
need for standardized reporting, code/data
sharing, and external prospective validations.

Future directions and opportunities

Key future angles to accelerate selective anti-
breast cancer discovery:

Pretrained chemical language models &
transfer learning: pretrain on billions of
molecules to improve low-data predictions
(Soares et al., 2022).

Multi-omics and systems-level integration:
include tumor genomics/epigenomics as context
features to predict subtype-specific activity (You
et al., 2022).

Active learning and closed-loop
experimentation: iterative QSAR-guided design
+ rapid synthesis/testing to converge on optimized
leads.

Generative models constrained by QSAR &
ADMET: use generative DL to propose
molecules optimized for potency, selectivity, and
ADMET profiles simultaneously.

Benchmarking & standardized datasets:
curated, cross-validated benchmark sets for breast
cancer endpoints to compare models fairly (Li,
2025).

Uncertainty-aware prioritization for better
resource allocation to experimental validation.

Conclusions

QSAR remains highly relevant for anti-breast
cancer drug discovery. Innovations in molecular
representation (GNNs, transformers), multi-
task/contextual models, integration with structure-
based methods, and ADMET prediction have
improved predictive power and practical utility.
Careful dataset curation, robust validation
(scaffold splits and applicability domains),
uncertainty quantification, and interpretability
remain essential. Integration of QSAR with
experimental and systems biology data, together
with closed-loop active learning, promises to
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further accelerate discovery of selective and safe
anti-breast cancer agents.
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