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Abstract 
Quantitative structure–activity relationship (QSAR) modeling remains a 

cornerstone of ligand-based drug design. Recent methodological 

innovations — including deep learning, graph neural networks, multi-

task models, transfer learning, and integration with structure-based 

methods — have increased QSAR’s power to predict and prioritize anti-

breast cancer compounds. This review synthesizes modern QSAR 

developments relevant to breast cancer drug discovery, examines 

datasets and validation best practices, highlights representative case 

studies where QSAR accelerated identification of selective inhibitors, 

and discusses persisting challenges and future directions.  Key themes 

include descriptor design and representation learning, multi-target and 

context-aware models for tumor subtypes, interpretability and model 

uncertainty, and practical integration with ADMET prediction and 

experimental pipelines. (Keywords: QSAR, deep learning, breast cancer, 

3D-QSAR, GNN, ADMET, ChEMBL). 
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Introduction 
Breast cancer remains a leading cause of cancer 

mortality among women globally and exhibits 

substantial molecular heterogeneity (You et al., 

2022). Differences across subtypes — estrogen 

receptor (ER)-positive, HER2-positive, and triple-

negative breast cancer (TNBC) — demand 

selective therapeutic strategies tailored to distinct 

molecular drivers. Ligand-based in silico methods 

such as QSAR can accelerate early-stage 

discovery by predicting biological activity from 

chemical structure, prioritizing molecules for 

synthesis and testing, and reducing cost and time 

compared with purely experimental screening 

(Soares et al., 2022). 

QSAR traditionally relied on handcrafted 

molecular descriptors and classical statistical 

models (e.g., multiple linear regression, PLS). 

Over the last decade, machine learning (ML) and, 

more recently, deep learning (DL) methods —  

 

including graph neural networks (GNNs) and 

transformer-based molecular encoders — have 

transformed QSAR capabilities, enabling more 

accurate and generalizable predictions across 

larger and noisier datasets (Soares et al., 2022; Li, 

2025). At the same time, integration with 

structure-based methods (docking, molecular 

dynamics), ADMET modelling, and multi-

objective optimization has made virtual screening 

pipelines more realistic and directly useful for 

anti-breast cancer drug development (El Rhabori 

et al., 2025; Zarougui et al., 2024). 

This review focuses on these innovations and how 

they can be applied to accelerate development of 

selective anti-breast cancer molecules. 
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Targets and biological context in anti-breast 

cancer QSAR 

Effective QSAR for breast cancer requires clear 

definition of targets and biological endpoints. 

QSAR models have been applied at different 

levels: 

Single-target biochemical assays: e.g., 

aromatase, estrogen receptor α (ERα), HER2 
kinase domain, CDKs, tubulin. These models 

predict binding or inhibition against purified 

protein/assay endpoints and are useful for lead 

optimization (Bhatia et al., 2025). 

Cellular endpoints: e.g., cytotoxicity (MCF-7, 

MDA-MB-231), proliferation IC50, apoptosis 

markers. These incorporate cellular context but 

are influenced by permeability, efflux, and 

metabolism (Karampuri et al., 2024). 

Phenotypic endpoints: invasion, migration, 

colony formation — more distal but biologically 

relevant. 

Multi-assay/multi-target models: combine 

heterogeneous endpoints (binding across several 

proteins or cell-line panels) to predict 

polypharmacology or tumor-subtype specificity 

(Karampuri et al., 2024; PTML approaches). 

Choosing the correct endpoint and dataset is 

crucial because models trained on biochemical 

binding do not always translate to cellular efficacy 

(El Rhabori et al., 2025). 

 

Datasets and curation 

Large, curated datasets fuel modern QSAR. Public 

resources include ChEMBL (bioactivity and 

assay metadata), PubChem BioAssay, 

GDSC/CCLE for cell-line sensitivity data, and 

specialized literature datasets focused on breast 

cancer targets (ChEMBL; Karampuri et al., 2024). 

Recent reviews emphasize the importance of: 

Assay harmonization (standardizing units, assay 

formats). 

Activity threshold selection (e.g., pIC50 cutoffs) 

or regression targets. 

Removing duplicates and inconsistent records. 

Annotating assay context (assay type, cell line, 

species). 

Large aggregated datasets enable ML/DL training 

but introduce noise; careful curation and 

metadata-aware modeling (e.g., multi-task or 

PTML approaches) help mitigate this (Soares et 

al., 2022; PTML literature). 

Molecular representations and descriptors 

Representation is central to QSAR performance. 

Classical descriptors 

1D/2D descriptors: molecular weight, logP, 

topological polar surface area (TPSA), counts of 

specific atom types, rotatable bonds. 

Fingerprinting: ECFP (circular/Morgan 

fingerprints), MACCS keys — widely used for 

similarity, clustering, and as inputs for ML 

(Soares et al., 2022). 

3D descriptors and 3D-QSAR 

3D-QSAR (CoMFA, CoMSIA) uses aligned 3D 

conformations to model steric/electrostatic fields 

affecting binding. For breast cancer targets where 

ligand conformations and binding modes are well 

defined (e.g., ER), 3D-QSAR can yield 

interpretable SAR maps guiding optimization 

(Kim et al., 2022; Zarougui et al., 2024). 

Learned representations 

Deep learning enables end-to-end learning from 

raw representations: 

Graph neural networks (GNNs) encode 

molecular graphs (atoms/nodes; bonds/edges) and 

learn features via message passing. 

Sequence/SMILES models (RNNs, 

Transformers) learn patterns in SMILES strings. 

Pretrained molecular encoders and transfer 

learning (pretraining on large chemical corpora 

and fine-tuning for breast cancer endpoints) 

improve performance in low-data regimes (Soares 

et al., 2022). 

These learned representations often outperform 

handcrafted descriptors for complex, non-linear 

activity relationships. 

 

Machine learning and deep learning 

architectures 

Classical ML methods 

Random forests, support vector machines, 

gradient boosting (XGBoost/LightGBM) have 

strong performance, particularly with engineered 

features and moderate-sized datasets. 

Deep learning 

Advances include: 

GNNs (GCN, GAT, MPNN) for structure aware 

learning. 

Graph Transformers and attention-based 

architectures. 

Multi-task neural networks predicting multiple 

endpoints simultaneously (beneficial when 
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endpoints are related, e.g., activity across cell 

lines). 

Hybrid models combining fingerprints with GNN 

embeddings or docking scores. 

Soares et al. (2022) and other recent reviews 

document superior performance of deep learning 

when properly regularized and when sufficient 

data or transfer learning is available. 

 

Multi-task, multi-target, and context-aware 

QSAR 

Cancer is complex; compounds frequently act on 

multiple targets and their efficacy varies across 

cell lines and contexts. Innovations include: 

Multi-task learning (MTL): trains a shared 

model to predict several related endpoints; helps 

transfer information between assays and reduces 

overfitting (Karampuri et al., 2024). 

Perturbation-aware models (PTML): 

incorporate assay metadata as features to model 

cross-assay heterogeneity (PTML literature). 

Contextual modeling: cell-line or omics features 

are combined with compound features to predict 

cell sensitivity (integrating genomic features of 

tumor models) (Karampuri et al., 2024; You et al., 

2022). 

These strategies are especially useful for 

predicting subtype-selective activity (e.g., 

compounds preferentially active in ER+ vs TNBC 

cell lines). 

 

Integrating QSAR with structure-based 

methods, docking and MD 

Combining ligand-based QSAR with docking, 

molecular dynamics (MD), and physics-based 

scoring improves confidence and can suggest 

binding modes for molecules prioritized by QSAR 

(El Rhabori et al., 2025; Zarougui et al., 2024). 

Typical integrated workflow: 

Large chemical library screened by fast 

QSAR/GNN models. 

Top candidates docked to target structures; 

docking scores and interaction fingerprints 

appended as additional descriptors. 

MD used to validate docking poses and compute 

binding free energy estimates for top candidates. 

ADMET filters applied before synthesis. 

This multi-layered approach leverages strengths 

of each method: QSAR’s speed and patterns 

across known actives, and docking/MD’s 
mechanistic insight. 

 

ADMET and toxicity prediction in anti-breast 

cancer pipelines 

Predicting ADME/Tox early reduces attrition. 

Modern QSAR integrates ADMET predictions 

(logP, solubility, CYP inhibition, hERG liability, 

DILI) as part of multi-objective optimization 

(Mostafa et al., 2024). Deep learning models 

trained on large toxicology datasets provide a 

second line of filters to remove compounds with 

high predicted liabilities. 

 

Validation, applicability domain, and 

uncertainty quantification 

Robust validation is essential to avoid misleading 

claims: 

Cross-validation strategies: scaffold split (more 

realistic) vs random split; scaffold split 

approximates prospective generalization (Soares 

et al., 2022). 

External test sets: gold standard. 

Applicability domain (AD): define chemical 

space where predictions are reliable (distance-

based, similarity thresholds). 

Uncertainty estimation: ensembles, Bayesian 

neural networks, Monte Carlo dropout help 

quantify model confidence — invaluable for 

prioritizing compounds for experimental follow-

up. 

Recent reviews stress scaffold-aware splits and 

explicit AD reporting as necessary for credible 

QSAR (Soares et al., 2022; Li, 2025). 

 

Interpretability and explainability 

Adoption in drug discovery benefits from 

interpretable models: 

Feature importance (SHAP, permutation) for 

fingerprint/descriptor models. 

Attention maps and substructure attribution 

for GNNs/transformers. 

3D-QSAR contour maps showing 

steric/electrostatic regions to modify. 

Explainability helps chemists design structural 

edits to optimize potency/selectivity. 
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Representative case studies (selected) 

Aromatase and ERα inhibitors 

Aromatase and ERα are classic targets for ER+ 
breast cancer. QSAR and 3D-QSAR studies 

(CoMFA/CoMSIA) plus docking have guided 

optimization of flavonoid derivatives and steroidal 

scaffolds (Awasthi et al., 2015; Bhatia et al., 

2025). 

Tubulin inhibitors and mitotic targets 

Recent QSAR + docking studies identified novel 

tubulin inhibitors with activity in breast cancer 

models (Moussaoui et al., 2024). Combined 3D-

QSAR and MD elucidated binding features. 

Cell-line specific QSAR 

Karampuri et al. (2024) developed combinational 

QSAR models that integrate multiple assays and 

cell-line metadata to predict activity across breast 

cancer cell lines. Multi-task approaches improved 

generalization. 

Deep learning in virtual screening 

Several recent studies show GNNs and 

transformer models trained or pretrained on large 

chemical libraries can prioritize actives against 

breast cancer targets and, when combined with 

docking/ADMET filters, accelerate hit discovery 

(Soares et al., 2022; practical cheminformatics 

analyses). 

 

Practical workflows and software/tools 

Open-source and commercial tools support 

modern QSAR pipelines: 

Descriptor calculators: RDKit, PaDEL. 

Fingerprints: RDKit (Morgan), CDK. 

ML frameworks: scikit-learn, XGBoost, PyTorch, 

TensorFlow, DGL/PyG for GNNs. 

Databases: ChEMBL, PubChem, GDSC/CCLE. 

Docking: AutoDock Vina, Glide (commercial). 

3D-QSAR: SYBYL/Forge (commercial), open 

approaches with RDKit + custom grids. 

ChEMBL and other curated repositories are 

primary sources for activity data (ChEMBL). 

 

Challenges and limitations 

While innovations improved QSAR, challenges 

remain: 

Data quality and assay heterogeneity — noisy 

labels, inconsistent endpoints hamper learning. 

Generalization — even advanced models can fail 

on novel scaffolds without transfer learning or 

domain adaptation (Variational blog discussion). 

Explainability vs performance tradeoffs. 

Integration with biological heterogeneity — 

tumor microenvironment, heterogeneity across 

patients not captured by cell lines. 

Regulatory acceptance and reproducibility — 

need for standardized reporting, code/data 

sharing, and external prospective validations. 

 

Future directions and opportunities 

Key future angles to accelerate selective anti-

breast cancer discovery: 

Pretrained chemical language models & 

transfer learning: pretrain on billions of 

molecules to improve low-data predictions 

(Soares et al., 2022). 

Multi-omics and systems-level integration: 

include tumor genomics/epigenomics as context 

features to predict subtype-specific activity (You 

et al., 2022). 

Active learning and closed-loop 

experimentation: iterative QSAR-guided design 

+ rapid synthesis/testing to converge on optimized 

leads. 

Generative models constrained by QSAR & 

ADMET: use generative DL to propose 

molecules optimized for potency, selectivity, and 

ADMET profiles simultaneously. 

Benchmarking & standardized datasets: 

curated, cross-validated benchmark sets for breast 

cancer endpoints to compare models fairly (Li, 

2025). 

Uncertainty-aware prioritization for better 

resource allocation to experimental validation. 

 

Conclusions 
QSAR remains highly relevant for anti-breast 

cancer drug discovery. Innovations in molecular 

representation (GNNs, transformers), multi-

task/contextual models, integration with structure-

based methods, and ADMET prediction have 

improved predictive power and practical utility. 

Careful dataset curation, robust validation 

(scaffold splits and applicability domains), 

uncertainty quantification, and interpretability 

remain essential. Integration of QSAR with 

experimental and systems biology data, together 

with closed-loop active learning, promises to 
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further accelerate discovery of selective and safe 

anti-breast cancer agents. 
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